Biogeochemical effects of ringwater influence on the
Mid-Atlantic Bight shelf: differences in microbially-driven

carbon cycling along a shelf transect
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- Waters of the Mid-Atlantic Bight (MAB) are affected by _ stn stn2 stn3 stnd
interactions with offshore waters of the Gulf Stream>®; these
interactions can bring different organisms — including microbial
communities — to the MAB. These microbial communities drive
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- Surface and bottom water was sampled at four stations along a g 0. =— s e e
shelf transect at 71 °W to compare microbial carbon-cycling S
capabilities and water mass characteristics at distinct depths = -
and locations in the MAB. - T T g
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- We measured bacterial abundance and activities, focusing on N e e o Bl B e

microbial enzyme activities, because these activities differ R $58 PPIIESE PP S3E58 553 $ g 8

substrate

Fig. 4: Enzymatic hydrolysis of peptides and simple sugars was compared in
using small substrate proxies>4. Rates and patterns of activities differed
strongly by station and depth: at Stns. 1 and 2, hydrolysis rates were very
low and only a narrow range of substrates was hydrolyzed. At Stns. 3 and 4,
a much wider range of substrates was hydrolyzed, and at higher rates. The
hydrolysis pattern in Stn. 4 bottom water was quite distinct from Stn. 3 or Stn. 4
surface water: no a-glucose, AAF, or FSR were hydrolyzed.

Key: a-glu = a-glucose; b-glu = B-glucose. Leu = leucine amino peptidase. AAF and AAPF are chymotrypsin
substrates; QAR and FSR are trypsin substrates (single letter AA codes)

among microbial communities’; the rates and substrate
specificities of extracellular enzymes help determine the rate
and location of carbon remineralization in the ocean.
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Fig. 2: High molecular weight substrates must be hydrolyzed by extracellular enzymes
prior to substrate uptake. The activities and structural selectivity of these enzymes helps
determine which substrates are accessible for a microbial community. The nature and types of
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Fig. 1: stations along 71 W
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substrates that are hydrolyzed by microbial extracellular enzymes varies markedly in ocean — - T =
\1N2aters, with difference in hydrolysis patterns with depth, latitude, and distance from the coast. o 1 + - - =
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substrate

Fig. 5: Enzymatic hydrolysis of 6 high molecular weight polysaccharides
also showed substrate- and depth-related differences. None of the microbial
communities could hydrolyze all 6 substrates: the same 4 substrates were

o _ hydrolyzed in surface water; 5 of the substrates were hydrolyzed in bottom water.
ol | Pullulan was hydrolyzed only in surface waters — and in the bottom waters of Stn.
| 4. Fucoidan was hydrolyzed only in bottom waters. Arabinogalactan was

- hydrolyzed in bottom waters — except at Stn. 4.
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Key: ara = arabinogalactan; chon = chondroitin sulfate; fuc = fucoidan; lam = laminarin; pull = pullulan; xyl =
xylan. All are high molecular weight marine-related polysaccharides of differing chemical composition.

Salinity

Fig. 3: Temperature and salinity at Stn. 1 (blue line; bottom depth 60 m), Stn. 2
(black; bottom depth 80 m), Stn. 3 (green; bottom depth 100 m), and Stn4 (red;
bottom depth 200m). Bottom waters of Stns. 1 and 2 were characteristic of
shelf water, while the bottom water of Stn. 3 showed features characteristic
of a mixture of slope and shelf water, and the bottom water of Stn. 4 was
characteristic of ring water.

Implications

Bottom water of Stn. 4 is characteristic of Gulf Stream rings
that impinge on the shelf of the MAB®. These waters clearly
bring microbial communities with carbon-cycling capabilities
distinct from communities associated with other water

Stn 1 surface 6.90E+07

Stn 1 bottom 9.80E+07
Stn 2 surface 2.00E+08

Stn 2 bottom 6.20E+07
Stn 3 surface 6.80E+07

Stn 3 bottom 4.10E+07
Sn 4 surface 7.50E+07

Stn 4 bottom 5.40E+06

Table 1: Cell counts, per-cell bacterial protein production, DOC, and
nutrients at all depths and stations.
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0.399
0.322
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0.451
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masses. The nature and extent of organic carbon cycled in
the MAB will depend in part on the frequency and extent to
which ring-associated water is brought into the MAB.
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