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Abstract
Marine zooplankton comprise a phylogenetically and functionally diverse as-
semblage of protistan and metazoan consumers that occupy multiple trophic
levels in pelagic food webs. Within this complex network, carbon flows via
alternative zooplankton pathways drive temporal and spatial variability in
production-grazing coupling, nutrient cycling, export, and transfer efficiency
to higher trophic levels. We explore current knowledge of the processing
of zooplankton food ingestion by absorption, egestion, respiration, excre-
tion, and growth (production) processes. On a global scale, carbon fluxes
are reasonably constrained by the grazing impact of microzooplankton and
the respiratory requirements of mesozooplankton but are sensitive to uncer-
tainties in trophic structure. The relative importance, combined magnitude,
and efficiency of export mechanisms (mucous feeding webs, fecal pellets,
molts, carcasses, and vertical migrations) likewise reflect regional variability
in community structure. Climate change is expected to broadly alter carbon
cycling by zooplankton and to have direct impacts on key species.
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Biological pump:
the suite of biological
processes that mediate
transport of carbon
from the upper ocean
to depth

1. INTRODUCTION
The pelagic food web plays a central role in regulating the exchange of CO2 between the atmo-
sphere and the surface ocean, as well as the transfer of organic carbon into the deep sea. Within
this food web, zooplankton serve both as trophic links between primary producers and higher
trophic levels (such as fish) and as recyclers that transform particulate carbon and nutrients into
dissolved pools. The enormous diversity in zooplankton taxa, life history, size, trophic ecology,
and physiology makes for fascinating study of their roles in food webs and biogeochemical cycles.
These roles, however, are represented simplistically in ecosystem and biogeochemical models,
which can be sensitive to small changes in zooplankton physiological functions and rates (Mitra
et al. 2014) and improved by adding behaviors such as food selectivity (Sailley et al. 2013). As
climate change and other stressors affect zooplankton abundance, biogeography, size structure,
and life cycles (Beaugrand et al. 2002, Richardson 2008, Mackas et al. 2012), it becomes increas-
ingly important to understand the various roles of zooplankton in carbon transformations and to
predict future changes.

This review describes the fundamental and multifaceted roles that zooplankton (both protis-
tan and metazoan; see sidebar Classification of Planktonic Consumers) play in the cycling and
export of carbon in the ocean (Figure 1). We begin with their roles as consumers and follow
the path of ingested carbon as it is absorbed, egested, metabolized, and made available to higher
trophic levels through growth and reproduction. This leads to an analysis of food-web fluxes based
on current global constraints on zooplankton feeding and energetics. We then progress to the
roles of zooplankton in vertical export and the biological pump, and conclude with long-term
and future changes in zooplankton carbon cycling. Throughout, we explore these processes and
roles across regions and taxa and consider a range of observational, experimental, and modeling
studies.

2. FEEDING RELATIONSHIPS AND IMPACTS
Within microzooplankton, the >5-µm flagellates (technically nano-sized; Sieburth et al. 1978) are
major consumers of prokaryote populations, including heterotrophic bacteria, archaea, and the
cyanobacteria Prochlorococcus and Synechococcus spp. (Fenchel 1982, Calbet & Landry 1999). Larger
microzooplankton, including ciliates and dinoflagellates, feed generally on protists of interme-
diate size (Sherr & Sherr 2002), although some large dinoflagellates are notable for their ability

CLASSIFICATION OF PLANKTONIC CONSUMERS

Planktonic consumers can be divided into two operationally defined size classes, the micro- and mesozooplankton,
depending on whether they pass through or are retained on 200-µm mesh screening. The microzooplankton size
class (<200 µm) is functionally dominated by protistan (unicellular eukaryote) consumers but also includes smaller
juvenile stages of metazooplankton species (Paffenhöfer 1998, Quevedo & Anadón 2000). The mesozooplankton
size class (0.2–20 mm) consists mainly of true animals but also includes large protists, such as pelagic foraminifera and
radiolaria (Stoecker et al. 1996). The term macrozooplankton is also commonly used for larger planktonic animals
(>20 mm), such as large gelatinous zooplankton, but here, for convenience, we include them in the mesozooplankton.
Both the micro- and mesozooplankton size classes are functionally diverse assemblages comprising multiple trophic
levels with complex feeding relationships (Sanders & Wickham 1993, Verity & Smetacek 1996, Vargas et al. 2007).
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Figure 1
Pathways of cycling and export of carbon by zooplankton in the ocean. Phytoplankton take up CO2 via photosynthesis in the euphotic
zone and are consumed by herbivorous micro- and mesozooplankton. In the multistep food web, where much of their carbon is
respired, microzooplankton are also the major prey of mesozooplankton. Phytoplankton particulate organic carbon (POC) is respired
by zooplankton as CO2 and excreted as dissolved organic carbon (DOC), which is used by phytoplankton or bacteria to fuel the
microbial loop. Mesozooplankton POC is transferred further up the food web to higher-level predators. Mesozooplankton and their
predators egest sinking fecal pellets, which can form into larger sinking aggregates. Diel vertical migrators feed in surface waters at
night and metabolize the food they ingested in the mesopelagic zone during the day; seasonal vertical migrations also occur.
Zooplankton and bacteria in the mesopelagic zone ingest and metabolize sinking POC, leading to attenuation of sinking POC.
Carcasses of dead zooplankton include bloom-forming gelatinous zooplankton that can give rise to rapidly sinking jelly falls to the deep
benthos. Advection below the mixed layer of DOC produced by phyto- and zooplankton in surface waters is also an important export
mechanism; this advection, the sinking of particles, and vertical migration comprise the biological pump. Adapted from previous
representations by D.K. Steinberg incorporated into a Joint Global Ocean Flux Study cartoon, Lebrato & Jones (2011), and Steinberg
(2017).
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to selectively capture and consume large diatoms (Strom & Buskey 1993, Hansen et al. 1994).
Trophic interactions within the microbial component of food webs are further complicated by
widespread mixotrophy, in which pigmented, photosynthetically capable cells also possess the
ability to consume prey (Thingstad et al. 1996, Stoecker 1998, Stoecker et al. 2009, Flynn et al.
2013).

Copepods typically make up 70–90% of mesozooplankton abundance (Turner 2004). Most
copepods operate as omnivorous suspension feeders that prey broadly on heterotrophic protists,
small animals (e.g., eggs and nauplii), and likely detritus, in addition to phytoplankton (Sherr et al.
1986, Stoecker & Capuzzo 1990, Calbet & Saiz 2005). As the major consumers of microzoo-
plankton, mesozooplankton represent the main utilization pathway of the secondary production
generated by smaller consumers that feed directly on phytoplankton. In addition, the diets of
mesozooplankton that feed by mucous nets, such as pelagic tunicates (appendicularians, salps, and
doliolids) and pteropods, can include prey as small as bacterioplankton that broadly overlap the
size range exploited by microzooplankton (Scheinberg et al. 2005, Sutherland et al. 2010). At
the same time, however, a diverse assemblage of organisms that use active raptorial prey hunting
(predatory crustaceans), ambush (chaetognaths), or entangling (ctenophores and medusae) cap-
ture strategies function primarily as carnivores. Dietary breadth can thus be as different within
the mesozooplankton as it is between meso- and microzooplankton. Carbon and energy flows
within the mesozooplankton are further complicated by changes in dietary breadth during species
development and by large size differences between early stages and adults, which blurs the trophic
separation of predators and prey, leading to unstructured food webs and convoluted energy flows
(Isaacs 1973, Landry 2002).

Although existing data are insufficient to assess trophic flows along the diverse pathways of
plankton food webs, several attempts have been made to derive global estimates of the feeding im-
pacts associated with major zooplankton size classes. Based on results from dilution experiments,
for example, Calbet & Landry (2004) concluded that microzooplankton consume 67% of primary
production (PP), on average, as direct feeding on phytoplankton, establishing their role as domi-
nant primary consumers in both coastal and open-ocean systems. Estimates of mesozooplankton
herbivory, determined from the combined results of experimental and gut fluorescence studies
in natural systems, range from 10% (in high-productivity regions) to 40% (in low-productivity
regions) (Calbet 2001). Although the proportion of production consumed by mesozooplankton
varies inversely with system productivity, mean weight-specific grazing estimates are more than
threefold higher (20% versus 6% of biomass per day) when production exceeds 1 g C m−2 d−1

compared with when it is less than 0.25 g C m−2 d−1 (Calbet 2001).
Schmoker et al. (2013) extended microzooplankton grazing assessments to major biogeograph-

ical provinces of the ocean, which were combined with estimates of mesozooplankton feeding on
phytoplankton and ciliates to create a global budget of carbon fluxes for epipelagic food webs.
The median regional estimates for microzooplankton grazing in this analysis ranged from 49% to
77% of PP, with a global value of 62% based on the province-weighted productivity estimates of
Longhurst et al. (1995). For a total 50 Gt C y−1 of PP, 31 Gt C y−1 (62%) was ascribed to grazing
by microzooplankton, 6 Gt C y−1 (12%) to consumption by mesozooplankton (Calbet 2001), and
3 Gt C y−1 (6%) to viral lysis, leaving 10 Gt C y−1 (20%) of ungrazed production for direct sinking
as algal aggregates. Mesozooplankton receive an additional dietary supplement of 5.6 Gt C y−1

from predation on microzooplankton, which is double the estimate of mesozooplankton feeding
on ciliates (Calbet & Saiz 2005), to account for consumption of heterotrophic dinoflagellates and
other nonciliate microzooplankton prey. We revisit this food-web flux analysis further below with
additional constraints and perspectives (see Section 6.1).
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Figure 2
Carbon consumption and metabolism by zooplankton. Prey (phytoplankton or other zooplankton)
particulate organic carbon (POC) is consumed by zooplankton. Because of sloppy feeding (by metazoa),
some of the dissolved organic carbon (DOC) in the prey is lost to the surrounding water while the rest of the
prey is ingested. Some of the POC that is ingested is absorbed across the digestive vacuoles (protists; see
magnified inset at left) or the gut walls (metazoa) of consumers, the proportion of which is termed
absorption efficiency. Carbon that is not absorbed is egested as fecal pellets, including mini-pellets egested
by protists, which may subsequently leach DOC. Of the carbon that is absorbed, a portion is respired as
CO2, and the rest is used for the animal’s growth and reproduction (secondary production). Adapted from
Møller et al. (2003) and Saba et al. (2009).

Remineralization:
transformation of
(particulate or
dissolved) organic
matter into its
inorganic constituents

3. ABSORPTION EFFICIENCY AND EGESTION
Absorption efficiency (AE), the proportion of ingested food absorbed across the digestive vacuoles
of protistan consumers or the gut walls of metazoan consumers, determines the availability of
organic constituents to meet zooplankton requirements for metabolism and growth (Figure 2).
(AE is also commonly called assimilation efficiency, although assimilation efficiency was originally
meant to refer to the portion of nutrition that is available for organism growth and reproduc-
tion; see Bochdansky et al. 1999.) The same process also determines the organic content of the
unabsorbed fraction that zooplankton return to the environment as egesta to be utilized or rem-
ineralized within the euphotic zone or exported to depth as packaged fecal pellets.
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Carbon export
efficiency:
the amount of organic
carbon exported from
the surface-ocean layer
divided by the amount
produced by
photosynthesis

AE is usually assumed to be a constant 70% in most marine ecosystem models or bioenergetic
calculations, and estimates of this approximate magnitude are well documented in field and labora-
tory studies. For example, Bochdansky et al. (1999) found mean AEs of 74% and 67%, respectively,
for a copepod mixture (Calanus spp.) and a large appendicularian (Oikopleura vanhoeffeni ). Simi-
larly, Madin & Purcell (1992) derived AE estimates of 61% for carbon and 71% for nitrogen for
the salp Cyclosalpa bakeri feeding on natural particulates in the subarctic Pacific. Other studies,
however, have shown substantial AE variability with food nutritional quality. Purcell (1983), for
instance, measured uniformly high values of 87–94% for carbon and 90–96% for nitrogen for four
genera of siphonophores, highlighting the fact that carnivores can digest their prey (which closely
resemble their own protein-rich body composition) more efficiently than herbivores can. This
also illustrates the general result that nitrogen is typically absorbed more efficiently than carbon,
which leads to more efficient cycling of nitrogen in the upper ocean as well as enhanced carbon
export efficiency by the biological pump. For the copepod Acartia tonsa, Besiktepe & Dam (2002)
determined carbon-based AEs ranging from <10% to >95% for various types and concentrations
of protistan prey. Thor et al. (2007) also reported low carbon AEs of 37–49% for the same copepod
feeding on unialgal cultures, demonstrating a connection to nutritional quality when a mixture
of cultures with complementary fatty acids led to enhanced AE (61%) and higher egg production
and hatching success. In addition, certain phytoplankton, such as the cyanobacteria Synechococcus
spp. and some diatoms, have the ability to resist digestion and pass intact through zooplankton
guts (Silver & Bruland 1981, Johnson et al. 1982, Bathmann & Liebezeit 1986). Differential di-
gestibility may thus contribute to the observed disproportionate presence of some cell types, and
their DNA, in sediment-trap and deep-sea samples relative to their proportional presence in the
overlying euphotic zone (Amacher et al. 2013).

As might be expected from variable AEs, the nutritional quality and sinking characteristics of the
egesta produced by zooplankton can vary greatly depending on the feeding environment. Under
controlled conditions, experimental studies have documented food type and concentration effects
on fecal pellet production rates, pellet volumes, and density, the latter reflecting variability in
compactness and mineral ballasting (Besiktepe & Dam 2002). More importantly, high variability
in fecal pellet characteristics is evident under natural field conditions, as observed in a notably
detailed study of Antarctic krill, Euphausia superba (Atkinson et al. 2012). Among the characteristics
measured, the ratio of carbon to dry weight varied by a factor of 75; the ratio of carbon to nitrogen
varied by almost a factor of 3; and the pellet diameters and sinking rates varied by factors of 7.5
and 45, respectively. When feeding rates were low, digestion slowed, AE increased, and the pellets
were smaller and denser and sank rapidly. When feeding rates were high, digestive processing was
less complete, resulting in larger pellets with higher organic content, slower sinking, and greater
potential for disaggregation or remineralization in the upper ocean. Even for a single zooplankton
species, therefore, factors that regulate the digestive processing of their ingested food can lead
to quite different outcomes with regard to the flow of carbon, nutrients, and energy within and
between the organism and its environment.

4. METABOLISM

4.1. Respiration

Respiration is a central process governing the balance of organic matter production (photosyn-
thesis) and loss (respiration or remineralization) in the ocean. Estimated global, full-ocean-depth-
integrated mesozooplankton respiration accounts for 13 Gt C y−1, equivalent to 17–32% of
global PP (based on 41–77 Gt C y−1 of global PP; del Giorgio & Duarte 2002, Hernández-León
& Ikeda 2005a). At the regional scale, detailed zooplankton community analysis for the Southern
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Ocean provides an estimate of ∼0.6 Gt C y−1, equivalent to 22–31% of the region’s PP of
1.95–2.7 Gt C y−1 (Mayzaud & Pakhomov 2014). Thus, zooplankton respiration is a major loss
term for organic carbon.

Typically, approximately 50% of the carbon absorption by zooplankton is respired (Figure 2),
but this proportion is influenced by many factors. The two primary factors are temperature and
body mass, which have been used extensively in multiple regression models to predict respiration
and excretion rates of marine zooplankton (e.g., Ikeda et al. 2001, Ikeda 2014). Q10, the factor
by which metabolic rates increase for a 10◦C increase in temperature, averages 1.9 for a range of
meso- and macrozooplankton taxa (Ikeda 2014). Although respiration rates increase with animal
body mass, weight-specific respiration decreases with body mass. Generally, the combined effects
of temperature and body mass result in tropical and subtropical zooplankton with higher weight-
specific respiration rates owing to their smaller size and warmer habitat temperature compared
with the larger body size of polar zooplankton (Hernández-León & Ikeda 2005a; but see Isla et al.
2004). Analogous changes in body mass (increase) and temperature (decrease) with depth lead to
a decrease in weight-specific respiration rates with increasing depth (Teuber et al. 2013).

Thermal thresholds and the balance of energetic gains and losses in zooplankton are suggested
to be valuable predictors of zooplankton responses to climate change. For a similar rise in tem-
perature, losses of metabolic carbon via respiration tend to be higher than energetic gains from
ingestion of particulate organic carbon (POC), as demonstrated for the arctic copepod Calanus
glacialis (Alcaraz et al. 2014). Warming beyond temperatures that increase this metabolic imbal-
ance may lead to a tipping point for a major shift in pelagic ecosystem structure (Alcaraz et al.
2014) and thus also in carbon cycling.

Other biological and physical factors that affect respiration include food concentration,
pressure, light, pH, and oxygen (reviewed in Hernández-León & Ikeda 2005b); locomotory
activity (Seibel & Drazen 2007); and developmental stage (Almeda et al. 2011). Oxygen has been
of considerable recent interest because of increasing coastal hypoxia and expansion of oxygen
minimum zones (OMZs) and is discussed further in Section 8. The relative importance of factors
causing variation in respiration is still under some debate (e.g., Seibel & Drazen 2007), and
conversion of zooplankton O2 consumption rates to respiratory carbon losses as CO2 is subject to
some variation in the conversion (respiratory quotient) factor used as well (see sidebar Converting
Zooplankton O2 Consumption Rates to Respiratory Carbon Losses as CO2), both of which could
affect carbon flux estimates.

CONVERTING ZOOPLANKTON O2 CONSUMPTION RATES TO RESPIRATORY
CARBON LOSSES AS CO2

Respiration in zooplankton is often measured by O2 consumption rather than by direct CO2 production. O2

consumption rates are converted to respiratory carbon losses as CO2 using the appropriate stoichiometry and a
respiratory quotient (RQ, the molar ratio of CO2 produced to O2 consumed) as follows:

µg C utilized d−1 = µL O2 utilized d−1 × (12/22.4) × RQ,

where 12/22.4 is the mass (12 g) of carbon in 1 mol (22.4 L) of CO2. The RQ depends on the substrate being me-
tabolized (protein, carbohydrate, lipid, or nucleic acid), with protein metabolism (RQ = 0.97) most widely assumed
because NH3, the end product of protein metabolism, is the primary nitrogenous waste product of marine zoo-
plankton (Hernández-León & Ikeda 2005b). Mayzaud et al. (2005) reported RQs for a number of mesozooplankton
taxa and showed RQ ranges between 0.61 and 1.62.
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Dissolved organic
matter (DOM):
the fraction of organic
matter dissolved in
water, typically
operationally defined
as passing through a
filter with a 0.45-µm
pore size

Coprophagy:
consumption of fecal
pellets

4.2. Excretion or Release of Dissolved Organic Carbon
Zooplankton-mediated release of dissolved organic matter (DOM) is one of the principal mech-
anisms controlling the quantity, composition, and cycling of DOM in the sea (Carlson & Hansell
2014). Release of DOM by zooplankton supports bacterial growth, fueling the microbial loop
(Peduzzi & Herndl 1992, Hansson & Norrman 1995, Hygum et al. 1997). The DOM released
can be highly labile, as evidenced by its rapid utilization by bacteria (Condon et al. 2011). Zoo-
plankton may release dissolved organic carbon (DOC) and other DOM via sloppy feeding (physical
breakage of the food source), excretion, egestion of dissolved digestive products (from metazoan
guts or protozoan food vacuoles), and leaching from fecal pellets (Lampert 1978, Strom et al. 1997,
Møller 2007) (Figure 2). Although excretion is the only one of these processes that results from the
metabolism of absorbed carbon (Figure 2), we include all pathways of DOC release here, as differ-
entiating among them experimentally can be challenging. Studies to date have suggested that excre-
tion and sloppy feeding are the dominant modes of DOC release of crustacean zooplankton, with
fecal pellet leaching playing a relatively minor role. For example, Saba et al. (2011) found that ex-
cretion and sloppy feeding constituted 80% and 20% of total DOC released, respectively, whereas
any DOC release from fecal pellet leaching was undetectable. Protozoan grazers release DOC
primarily through excretion and egestion (Strom et al. 1997, Nagata 2000), and gelatinous zoo-
plankton can release DOC via production of carbon-rich colloidal mucus in addition to the other
mechanisms above (Hansson & Norrman 1995; Condon et al. 2009, 2011). Although values range
widely, on the order of 10–30% of POC ingested by protozoan and metazoan zooplankton is re-
leased as DOC, with zooplankton DOC release comparable to or exceeding that by phytoplankton
extracellular release (e.g., see the reviews Nagata 2000, Carlson 2002, Ruiz-Halpern et al. 2011, and
Carlson & Hansell 2014). In addition, the remnants of individual small prey egested from protistan
feeding vacuoles will enter the DOC pool as they decompose and solubilize in the euphotic zone.

Prey size and zooplankton diet composition are important controls on DOC release rates. Stud-
ies using 14C-labeled phytoplankton have indicated a large range in the fraction of phytoplankton
carbon ingested that is released as DO14C via copepod sloppy feeding (∼7–70%) (Copping &
Lorenzen 1980; Møller & Nielson 2001; Møller et al. 2003; Møller 2005, 2007). This variability
in DOC production is partially a function of the relative sizes of predator and prey. The larger the
prey is relative to the copepod, the higher the release caused by sloppy feeding will be; very small
prey are ingested whole, with little or no DOC produced (Møller 2005, 2007). Differences in zoo-
plankton diet also affect the magnitude and stoichiometry of DOM released. For example, release
rates of DOC and NH4

+ by the copepod A. tonsa were higher for a carnivorous diet of heterotrophic
dinoflagellates than for a mixed, omnivorous diet of diatoms and heterotrophic dinoflagellates,
despite similar ingestion rates and ratios of carbon to nitrogen in prey between treatments (Saba
et al. 2009). Fecal pellets produced by A. tonsa fed cryptophytes or dinoflagellates had faster rates
of decomposition and DOC release than those fed diatoms (Thor et al. 2003). Leaching of DOC
from pellets may occur within minutes of egestion (Møller et al. 2003) and continue for hours or
even days (Urban-Rich 1999, Thor et al. 2003), and may be maximized under conditions of high
food concentration and quality and during breakage by coprophagy (Carlson & Hansell 2014).

5. GROWTH AND PRODUCTION
There is no standard approach for directly assessing zooplankton growth that can be applied to the
whole community or at the scale of ocean PP measurements. However, various methods have been
advanced for extrapolating from empirical relationships and general principles to local, regional,
or global estimates of zooplankton production.
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Gross growth
efficiency (GGE):
the proportion of food
ingested by an animal
that is converted into
growth

Instantaneous
growth rate: for
exponential growth,
the slope of the
regression of time
versus log-transformed
biomass; the unit is per
day (d−1)

For microzooplankton, production estimates can be made from measured rates of community
grazing using an assumed gross growth efficiency (GGE). Landry & Calbet (2004) argued that
30% (Straile 1997) was a reasonable average carbon GGE estimate for mixed protistan commu-
nities over the normal range of ocean conditions because of the low inherent basal metabolic
requirements of the organisms in these communities (Fenchel & Finlay 1983) and rapid composi-
tional adjustments to environmental variability (i.e., selection for species and types that can grow
optimally at ambient conditions). Thus, the combined grazing impacts on phytoplankton and bac-
teria (60–75% and 10% of PP, respectively) lead to secondary production estimates of 21–25% of
PP for microzooplankton in varying ecosystems (estuarine to oceanic, tropical to polar) (Landry
& Calbet 2004). However, total microzooplankton production estimates can even be higher (27–
33% of PP) if there are two trophic levels of protistan consumers between phytoplankton and
mesozooplankton.

For mesozooplankton, production estimates are more easily approached from derived relation-
ships based on temperature and body size rather than their GGEs, which can be variable and food
dependent. Huntley & Lopez (1992) initially explored this idea with a data synthesis that demon-
strated a strong temperature dependency of mean instantaneous growth rates of copepod species,
derived from developmental times and egg-to-adult biomass ratios. Over a broad tropical-to-polar
temperature range of −1.7◦C to 30◦C, temperature alone accounted for 90% of the variability in
growth rate, suggesting that species size differences were inconsequential for estimating produc-
tivity from zooplankton biomass estimates. Subsequent studies have nonetheless demonstrated
that body weight information improves the predictability of copepod generation times and juve-
nile growth rates (Hirst & Sheader 1997) as well as the growth rates of broadcast-spawning adults,
measured as weight-specific production of egg biomass (Hirst & Lampitt 1998). The resulting
empirical relationships thus provide a means for predicting the growth and production of the
numerically dominant metazooplankton in marine systems using two easily measured parameters,
temperature and size-structured biomass.

Although the applicability of such copepod-based equations to diverse mesozooplankton as-
semblages has not been rigorously tested, the approach has been used to evaluate zooplankton
trophic flows in several regions with the requisite data to put them into an ecological context. In
the Arabian Sea, for example, mesozooplankton biomass was estimated to grow at a mean instan-
taneous rate of 0.12 d−1, implying daily carbon consumption equivalent to approximately 40% of
zooplankton biomass and 40% of phytoplankton production (Roman et al. 2000). From similar
calculated carbon fluxes for subtropical ocean time-series stations, Roman et al. (2002) found that
similar PP supported twice the zooplankton production in the Pacific [5.5% of PP at the Hawaii
Ocean Time-series (HOT) site] compared with the Atlantic [2.7% of PP at the Bermuda Atlantic
Time-series Study (BATS) site], which the authors ascribed to inefficiencies of trophic coupling
or missed event-scale blooms of gelatinous consumers at the Atlantic site.

6. FOOD-WEB CYCLING
While acknowledging that material flows through individual zooplankton vary substantially with
taxon, food, and environmental conditions that are not well understood, here we apply the general
community-level empirical relationships discussed above (Sections 4 and 5) to an upper-ocean
carbon budget on a global scale. Such an analysis allows us to focus on the major trophic pathways
involving zooplankton, their structural uncertainties, and the implications of those uncertainties
for carbon fluxes within a constrained network of trophic interactions. This section also sets the
stage for subsequent considerations of more complex food-web issues (dynamics, mixotrophy) as
well as the roles zooplankton play in the ocean’s biological pump.
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6.1. A Constrained Upper-Ocean Carbon Budget
As done previously by Schmoker et al. (2013), our analysis begins with global estimates of mi-
crozooplankton grazing, the largest direct consumption loss for phytoplankton production and
the most widely measured. Importantly, however, we add global estimates of mesozooplankton
respiration to better constrain their nutritional requirements and feeding impacts. Using the
Schmoker et al. (2013) data set with an arctangent transformation of the grazing:growth ratio
according to the method described by Calbet & Landry (2004), we derive a mean estimate of
66% of phytoplankton PP consumed by microzooplankton (Figure 3), which slightly exceeds the
62% median estimate previously reported but arguably better represents the rarer occurrences
where grazing exceeds production. Assuming a mean global PP of 50 Gt C y−1 as the scaling
basis, microzooplankton herbivory accounts for the utilization of 33.2 Gt C y−1. To this we add
10% of global PP (5 Gt C y−1) as microzooplankton consumption of bacterial secondary pro-
duction, which has been estimated to be 10–15% of PP on average (Anderson & Ducklow 2001),
the excess going to viral lysis. Assuming that microzooplankton GGE is 30% (Straile 1997), the
maximum microzooplankton production that could be consumed by mesozooplankton is 11.5 Gt
C y−1. This is double the estimate of 5.6 Gt C y−1 that Schmoker et al. (2013) determined based
on extrapolations of mesozooplankton predation on ciliates by Calbet & Saiz (2005). However,
if the transfer of microzooplankton production to mesozooplankton involves two intermediate
food-web steps rather than one, then that flux would be reduced by 70%. Thus, the range of
11.5–3.4 Gt C y−1 shown in Figure 3 (where the first number is the value for a scenario with
one trophic level between phytoplankton and mesozooplankton, and the second is the value for
a scenario with two intermediate levels of consumers) reflects uncertainty in the mean trophic
structure of the microbial food web.

The global respiratory estimate of 10.4 Gt C y−1 for mesozooplankton in the upper 200 m of the
oceans (Hernández-León & Ikeda 2005a) is a major constraint on carbon absorption requirements
of animals that depend directly on phytoplankton production in the euphotic zone. In this regard,
the total global ingestion of mesozooplankton from combined phyto- and microzooplankton in
the Schmoker et al. (2013) analysis is 11.5 Gt C y−1, which is equivalent to ∼8 Gt y−1 of carbon
absorbed (assuming AE = 70%) and far short of what is needed to satisfy metabolic demands in
the absence of any growth. There is consequently a gross inconsistency in the previous budget
with respect to global ingestion and respiration estimates for mesozooplankton. Alternatively, if
respiratory losses make up 50% of the mesozooplankton energetic budget on average (consistent
with AE = 70% and GGE = 20%), the missing ingestion of mesozooplankton not provided by
microzooplankton consumption must be 9.3–17.4 Gt C y−1 (19–35% of PP) for the range of
microbial food-web structures (one or two trophic steps) represented in Figure 3. These estimates
exceed by two- to threefold Calbet’s (2001) estimate of 5.5 Gt C y−1 for global mesozooplankton
herbivory. We note, however, that the mean estimate for that data set was 23% of PP (Calbet
2001) before geometric transformation and regression analysis diminished the impact of the higher
grazing results. Consequently, a different interpretation of the same data might suggest higher
mesozooplankton herbivory of a magnitude that falls within the range of what we calculate will
meet ingestion requirements for metabolism and growth. In addition, Buitenhuis et al. (2010)
showed that a model constrained by global biomass data for microzooplankton consistently set rates
of mesozooplankton herbivory in the range that we suggest here (10–19 Gt C y−1), although this
comes at the cost of reduced microherbivory. Estimates of mesozooplankton biomass production
(4.2 Gt C y−1) and fecal pellet production (6.2 Gt C y−1) from the present analysis are upper limits
for zooplankton contributions to carbon transfer to higher trophic levels and to export of sinking
POC from the upper ocean because they do not consider various processes that might lower their
magnitudes (Dilling & Alldredge 2000, Anderson et al. 2013).
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Phytoplankton

PP = 50 Gt y–1

BP = 5–7.5 Gt y–1

Bacteria Respiration

33.2 Gt y–1

15.3–19.8 Gt y –1
66%

11
.5–

3.4
 G

t y
–1

9.3–17.4 Gt y
–1   19

–35
%

4.1–12.2 Gt y
–1   8–

24%

23
–7
%

5 G
t y

–1
10
%

10.4 Gt y–1

25–40 Gt y–1

Production 
4.2 Gt y–1

4.6 Gt y–1 

Fecal pellets 
6.2 Gt y–1

6.8 Gt y–1 

Ungrazed
7.5–0 Gt y–1

12.7–4.6 Gt y–1

Figure 3
Zooplankton-mediated carbon fluxes in marine epipelagic food webs. The global carbon flux balances for
epipelagic food webs shown here emphasize alternative scenarios of trophic structure and carbon flow
through micro- and mesozooplankton, represented by a ciliate (center) and copepod (top right), respectively.
All estimates are scaled to a global primary production (PP) of 50 Gt C y−1; numbers in italics are
percentages of this total. The major constraints are set by microzooplankton herbivory (based on data in
Schmoker et al. 2013) and global estimates of mesozooplankton respiration (Hernández-León & Ikeda
2005a). Alternative scenarios for microzooplankton trophic structure are given by ranges in flux estimates to
mesozooplankton and ungrazed phytoplankton: The first number is the value with one trophic level (e.g.,
ciliates) between phytoplankton and mesozooplankton, and the second is the value with two intermediate
levels of consumers (e.g., flagellates and ciliates). Alternative scenarios for mesozooplankton trophic
structure are shown in different font colors: Black denotes values when no cycling occurs within the
mesozooplankton, and red denotes values when mesozooplankton internally consume 50% of their biomass
production and 50% of their fecal pellet production. Additional abbreviation: BP, bacteria production.

Whether mesozooplankton achieve such high grazing impacts on average or have other means
of satisfying their energetic requirements are important issues that emerge from this analysis. Feed-
ing on phytoplankton aggregates is assumed to be already incorporated into the grazing estimates
based on the measured uptake or disappearance of chlorophyll a, so that offers no new nutritional
source. However, mesozooplankton are well known to disrupt, consume, and derive significant
nutrition from fecal pellets (Dilling et al. 1998, Dilling & Alldredge 2000). If they consume half
of their fecal pellet production with a relatively high AE (Dilling et al. 1998) before leaving the
euphotic zone, that level of coprophagy could contribute 3.1 Gt C y−1 to ingestion that would not
have to come directly from phytoplankton. The remaining nutritional resource is carnivory within
the mesozooplankton size fraction. If half of mesozooplankton biomass production is utilized by
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carnivorous zooplankton, an additional 2.1 Gt C y−1 of ingestion would not have to come directly
from herbivory. In Figure 3, we use the sum of these alternative dietary sources (5.2 Gt C y−1,
i.e., rates shown in black minus those in red in Figure 3), which is almost as large as the previous
estimate for mesozooplankton herbivory, to set a lower limit for phytoplankton consumption that
is consistent with metabolic constraints. For mesozooplankton grazing on phytoplankton, the
range of 4.1–17.4 Gt C y−1 (8–35% of PP) thus includes some consideration of carbon cycling
uncertainties for mesozooplankton as well as microzooplankton trophic structure. The lower
value establishes the conditions under which mesozooplankton herbivory of the order suggested
by Calbet (2001), 12% of PP, would be consistent with their global respiration estimates—a
short, efficient trophic structure (one microzooplankton step) and significant carbon inputs from
coprophagy and carnivory.

The remaining fluxes in the carbon budget highlight zooplankton roles in the cycling of fixed
carbon back to inorganic constituents (i.e., upper-water-column remineralization). Micro- and
mesozooplankton respire 31–40% (15.3–19.8 Gt C y−1) and 21% (10.4 Gt C y−1) of PP, respec-
tively, with bacteria likely accounting for an additional 50–90% (Anderson & Ducklow 2001,
Rivkin & Legendre 2001). This part of the budget is poorly constrained and can easily exceed
100% because the uptake of 14C-labeled bicarbonate into particulates over 24-h incubations,
the standard for PP measurements in the ocean, often represents only half to a third of total
gross PP (Dickson et al. 2001). Similarly, losses of phytoplankton and bacteria to viral lysis are
unmeasured by standard dilution experiments (Baudoux et al. 2008, Pasulka et al. 2015), which
provide the basis for the proportion of net PP consumed by microzooplankton in this analysis.
Thus, they are presumed to be included in microbial cycling processes that make up the differ-
ence between gross and net production rates (Landry 2009). Lastly, details of organic fluxes that
support bacterial production by various mechanisms (such as sloppy feeding, organic exudation,
fecal pellet leaching, viral lysis, and DOC production by phytoplankton) are left unresolved in this
analysis.

6.2. Dynamics of Food-Web Coupling
Few studies exist on a regional scale of contemporaneous measurements of micro- and meso-
zooplankton grazing integrated for the depth range of the euphotic zone, which are necessary for
resolving full community grazing impacts relative to integrated phytoplankton production (Landry
et al. 2011b). The available studies from tropical and subtropical regions (the Arabian Sea, equa-
torial Pacific, and Costa Rica Dome) show what might be expected for generally stable, warm, and
stratified conditions: a relatively close agreement between phytoplankton production and the com-
bined grazing losses to micro- and mesozooplankton, as well as the direct consumption of virtually
all production of the smallest phytoplankton (Prochlorococcus, Synechococcus, and picoeukaryotes) by
microzooplankton (Landry 2009; Landry et al. 2011a, 2016). Similarly efficient coupling of pro-
duction, grazing, and presumably nutrient recycling occurs during the stratified nutrient-deficient
periods of more dynamic seasonal environments, such as the North Atlantic (Lenz et al. 1993). This
implies that zooplankton typically regulate phytoplankton carbon biomass over a large portion of
the ocean by exerting predation pressures that roughly balance phytoplankton production (Banse
1994, Landry et al. 1997), leaving little unconsumed in the euphotic zone. However, physical or
chemical disruptions of that production-grazing coupling can lead to massive blooms and high
potential export of ungrazed phytoplankton (Weeks et al. 1993, Legendre & Rivkin 2002, Irigoien
et al. 2005, Behrenfeld 2010, Martin et al. 2011, Behrenfeld & Boss 2014). Regional or temporal
variability in food-web dynamics that disrupts the production-grazing coupling can consequently

424 Steinberg · Landry

A
nn

u.
 R

ev
. M

ar
. S

ci
. 2

01
7.

9:
41

3-
44

4.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 b
y 

Jim
 D

un
ca

n 
on

 0
1/

20
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



MA09CH17-Steinberg ARI 16 November 2016 9:6

Phagotrophy:
feeding by ingesting
organisms or organic
particles

lead to high variability in the zooplankton contribution to passively sinking particulate organic
matter, as judged by the biomass of recognizable fecal pellets relative to total export.

In the food-web flux analysis above (Figure 3), the amount of PP that escapes zooplankton
consumption in the upper ocean ranges from 0% to 25% of PP, depending on trophic structure
assumptions. For a minimal one level of microzooplankton consumers and assuming that half of
zooplankton production is consumed by carnivorous zooplankton, 9.8 Gt C y−1 (20% of PP) would
escape consumption, approximately 50% higher than the estimated mesozooplankton production
of fecal pellets (6.2 Gt C y−1). However, this depends strongly on the mean trophic pathway of
microzooplankton production to mesozooplankton. Nonetheless, over varying ocean systems and
conditions, the contribution of recognizable fecal pellets to total POC export ranges from <1%
to ∼100%, with most contributions estimated at <40% of POC flux (Turner 2015). Reasonable
assumptions about food-web structure and fluxes can clearly arrive at estimates in this range.

6.3. Trophic Position and Mixotrophy
The importance of understanding the trophic structure of pelagic food webs is highlighted in
Figure 3 by the substantial uncertainties in carbon flows to mesozooplankton resulting from
the alternative configurations of the microbial food web (one step or two). This can be further
complicated by adding consideration of protistan mixotrophy. There is little doubt that mixotro-
phy is an important nutritional strategy for plastidic (chlorophyll-containing) cells, particularly
in open-ocean oligotrophic systems, where the ability to acquire nutrients by phagotrophy
avoids direct competition with bacteria for uptake of dissolved nutrients (Thingstad et al. 1996).
Field studies have suggested that many or most of the cells considered to be phytoflagellates in
open-ocean systems might be functionally mixotrophic (Unrein et al. 2007, Zubkov & Tarran
2008, Stukel et al. 2011, Hartmann et al. 2012, Sanders & Gast 2012). As argued persuasively
by Mitra et al. (2014), widespread mixotrophy should enhance nutrient recycling efficiency via
direct consumption of bacterial production by primary producers, and given the availability of
photosynthetic carbon fixation to satisfy metabolic demands and a higher efficiency of converting
carbon ingested to cell growth (GGE), it should also improve the transfer efficiency of production
to higher consumers. With these points in mind, we consider some implications of mixotrophy
for the fluxes depicted in Figure 3.

First, any direct consumption of mixotrophs by mesozooplankton must already be included in
the estimates of mesozooplankton herbivory from Calbet (2001) by virtue of the fact that these
grazing impacts were derived from measured rates of consumption (by either cell disappearance
or gut fluorescence) of pigmented cells. Direct consumption of mixotrophs, therefore, does not
resolve the herbivory shortfall for satisfying metabolic requirements, but could actually increase
that shortfall to the extent that it diminishes fluxes that would otherwise be assumed to come from
predation on microzooplankton. Second, direct consumption of bacteria by mixotrophs would
mean, in the extreme, that bacterial production is incorporated in the production attributed
to phytoplankton rather than providing a separate source of nutrition to microzooplankton.
This interpretation arises because the estimates of phytoplankton production consumed by
microzooplankton from dilution experiments are based on the measured biomass growth
rate of pigmented cells (which includes mixotrophs), rather than 14C uptake (which would
potentially exclude the portion of phytoplankton growth derived from phagotrophy). Thus,
mixotrophy might raise the PP basis of Figure 3 from 50 to 55 Gt C y−1 if bacterial production
was converted to phytoplankton with 100% efficiency, but the total relative consumption by
microzooplankton (66.3% of 55 Gt C y−1) would remain the same. Although there may be
a GGE boost for intermediate levels of mixotrophic grazers that are not consumed directly
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by mesozooplankton (and therefore not counted as herbivory), the net impact on food-web
carbon fluxes is far from clear. Future studies focused on the details of trophic interactions and
energy flows in the microbial portion of pelagic food webs are needed to resolve this interesting
question.

Independent of the role of mixotrophy, the mean trophic position of mesozooplankton relative
to phytoplankton remains a key unknown for assessing regional and temporal variability in the
transfer of zooplankton production to higher trophic levels. Most fisheries models assume, for
example, that suspension-feeding mesozooplankton are the primary consumers of phytoplankton
(trophic position = 2) (Pauly & Christensen 1995, Pauly et al. 2002), and standard isotopic ap-
proaches for estimating trophic positions fail to resolve the trophic steps associated with protistan
consumers (Hannides et al. 2009a,b; Gutiérrez-Rodrı́guez et al. 2014). New perspectives and ap-
proaches are thus also needed for the higher levels of pelagic food webs to account for the trophic
complexities of zooplankton.

7. THE ROLE OF ZOOPLANKTON IN THE BIOLOGICAL
PUMP AND CARBON EXPORT

7.1. Particle Production and Carbon Export

Zooplankton can be substantial contributors to POC export through their production of sinking
fecal pellets, mucous feeding webs, molts (crustacean exoskeletons), and carcasses (Figure 1).
The contribution of fecal pellet carbon to total sinking POC flux varies widely among regions,
seasons, and depths (see compilations in Turner 2002, 2015; Wilson et al. 2013; and Steinberg
2017) and is dependent on many factors, including the size distribution, species composition, and
abundance or biomass of both the zooplankton community and their food (Dagg et al. 2014).
These regional differences are illustrated in Figure 4 and discussed further below. Zooplankton
size and species composition in particular affect pellet sinking rates, which range from tens to
hundreds of meters per day for copepod and euphausiid pellets (e.g., Yoon et al. 2001) to more
than 1,000 m d−1 for salps (Phillips et al. 2009). Mini-pellets (Gowing & Silver 1985) produced
by microzooplankton can contribute to POC export as well (e.g., Buck et al. 2005, Lampitt et al.
2009). Many measurements of fecal pellet carbon fall below approximately 40% of total POC flux
(Turner 2015), but these estimates are likely conservative, as pellets can break apart in traps and
become indistinguishable from aggregates of other origin (Wilson et al. 2008), although the use
of polyacrylamide gels helps retain pellet structure (e.g., Ebersbach & Trull 2008).

Under what conditions, then, are fecal pellets predicted to be a major component of the sinking
POC flux? The size structure and biomass of the grazer community are clearly key. In a compar-
ison between the subarctic and subtropical North Pacific, large fecal pellets produced by a large
Neocalanus sp. copepod and a high copepod biomass led to higher carbon export efficiency in the
subarctic Pacific (Wilson et al. 2008) (Figure 4g). Using a model of copepod fecal pellet carbon flux
in the Gulf of Maine, Stamieszkin et al. (2015) showed that copepod size, rather than abundance,
is the master trait determining the fraction of copepod fecal pellet carbon that reaches depth. POC
flux measured over the continental shelf of the western Antarctic Peninsula is dominated by fecal
pellets, mostly from large Antarctic krill (Figure 4e), which constitute 67% of the total POC flux
in summer compared with 34% in winter, when krill abundance is low (Gleiber et al. 2012). Dagg
et al. (2014) also found that episodic events of high fecal pellet flux off the California coast required
conditions of both high concentrations of large phytoplankton and diel migrating euphausiids.
Likewise, fecal pellets contributed a higher proportion of total POC export (close to 100%) in a
coastal upwelling system off California during the productive spring period than they did in the
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Figure 4
Zooplankton fecal pellets and other detritus in sediment traps deployed at the base of the epipelagic zone (100–170 m) around the world,
overlaid on a SeaWIFS (Sea-Viewing Wide Field-of-View Sensor) ocean color chlorophyll a map (from http://earthobservatory.nasa.
gov/IOTD/view.php?id = 4097). (a) An upwelling region off the California coast, showing a mix of copepod fecal pellets, diatom
debris, and a salp pellet (lower left). (b,c) The Bermuda Atlantic Time-series Study (BATS) station in the North Atlantic subtropical
gyre, showing a typical trap sample with small crustacean pellets (panel b) and a large export of salp pellets from a salp bloom (panel c).
(d ) The Amazon River plume in the tropical North Atlantic, showing a mix of crustacean fecal pellets and pellets of unknown origin
(top left). (e) The western Antarctic Peninsula, showing a trap sample over the continental shelf that is composed almost exclusively of
Antarctic krill (Euphausia superba) fecal pellets. ( f ) Hawaii Ocean Time-series (HOT) station ALOHA in the North Pacific subtropical
gyre, showing copepod and euphausiid pellets and a large heteropod pellet ( far left). ( g) The subarctic North Pacific, showing abundant
copepod fecal pellets from the large copepods Neocalanus spp. The scale bars below each image are 1 mm. Photos are from M. Stukel
(panel a), D.K. Steinberg (panels b–d ), M. Gleiber (panel e), and Wilson et al. (2008) (panels f and g).

fall (Stukel et al. 2013) (Figure 4a). Interestingly, Wilson et al. (2013) found that fecal pellets con-
stituted a greater proportion of abyssal POC flux in the northeast Pacific during periods of lower
total POC fluxes, when fecal pellets may be a relatively more important food source for deep-sea
communities. High export can also occur during blooms of gelatinous zooplankton (such as salps)
that produce large, fast-sinking pellets (compare Figure 4b and Figure 4c). In years with large
salp blooms off Bermuda, the maximum annually averaged salp-mediated carbon export (most of
which is fecal pellets) equated to 60% of trap POC flux at 200 m (Stone & Steinberg 2016).

www.annualreviews.org • Zooplankton and the Ocean Carbon Cycle 427

A
nn

u.
 R

ev
. M

ar
. S

ci
. 2

01
7.

9:
41

3-
44

4.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 b
y 

Jim
 D

un
ca

n 
on

 0
1/

20
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://earthobservatory.nasa.gov/IOTD/view.php?id=4097
http://earthobservatory.nasa.gov/IOTD/view.php?id=4097


MA09CH17-Steinberg ARI 16 November 2016 9:6

Repackaging:
the consumption by
zooplankton of
suspended or sinking
particles (e.g., fecal
pellets) and
re-egestion as “new”
fecal pellets

Swimmers:
zooplankton that swim
into sediment traps
and die there, as
opposed to entering
traps as sinking
particles (i.e.,
carcasses)

Certainly many other factors control carbon export by fecal pellets. Fecal pellets are altered as
they sink, and their contribution to export changes with depth because of bacterial degradation
(Smith et al. 1992, Thor et al. 2003, Tang 2005) and fragmentation (Poulsen & Kiørboe 2005) or
ingestion and repackaging by mesopelagic consumers (Steinberg et al. 2008a, Wilson et al. 2008)
(see also Section 7.3). Indeed, most fecal pellets produced in the upper mixed layer are degraded
by zooplankton such as ciliates, heterotrophic flagellates, and copepods, resulting in retention and
recycling of fecal carbon in surface waters (Poulsen & Iversen 2008, Svensen et al. 2012). The
composition and sinking rate of fecal pellets are affected by diet and the kinetics of food processing,
as described in Section 3. Physical features also affect fecal pellet export directly, as when density
discontinuity layers can cause retention of pellets in surface waters (Alldredge et al. 1987), or
indirectly, as when fronts or mesoscale eddies concentrate zooplankton or change their assemblage
structure and consequently fecal pellet export (Goldthwait & Steinberg 2008, Shatova et al. 2012).

Several zooplankton taxa, particularly appendicularians (larvaceans) but also pteropods and
pelagic foraminifera, produce mucous feeding webs that contribute to POC export. Larvaceans
use their mucous houses to filter and concentrate food particles, and when the house filters
become clogged, the house is discarded, including attached noningested particles plus the
larvacean’s fecal pellets (Alldredge et al. 2005). Larvaceans may secrete and discard up to 26
houses per day (Sato et al. 2001), and these houses then sink at rates of 10–800 m d−1 depending
on their size, age, and other factors (Robison et al. 2005, Lombard & Kiørboe 2010). Because
of the fine mesh of their feeding filter, larvaceans can concentrate and ingest particles as small as
0.2 µm (Flood & Deibel 1998, Lombard et al. 2011), and thus their discarded houses and fecal
pellets are vehicles for small, slow- or nonsinking cells to be rapidly exported to depth. Discarded
houses of two abundant, ubiquitous larvacean species can contribute 12–83% (typically 28–39%)
of total POC flux from surface waters in a range of eutrophic coastal and oligotrophic oceanic
environments (Alldredge et al. 2005).

Dead zooplankton, including carcasses of crustacean and gelatinous zooplankton, are increas-
ingly recognized as important agents of carbon export. It is challenging to measure the magnitude
of this flux, however, because formalin-poisoned sediment traps are commonly used to measure
POC export, making it difficult to distinguish carcasses from swimmers that entered traps live and
then died there (Buesseler et al. 2007, Frangoulis et al. 2011; but see Sampei et al. 2009). Fur-
thermore, large gelatinous zooplankton carcasses are not sampled by most sediment-trap designs.
Copepod carcasses are abundant in the plankton (Tang et al. 2006, Elliott & Tang 2011), and swim-
mer exclusion devices in sediment traps have shown that the POC and particulate organic nitrogen
fluxes by these carcasses exceed those by fecal pellets in the western Mediterranean Sea (Frangoulis
et al. 2011). Using the postmortem position of copepod antennules and swimming legs to separate
swimmers from true carcasses in sediment traps, Sampei et al. (2012) calculated that the contri-
bution of copepod carcasses to total POC flux in the Beaufort Sea was highest in winter to early
spring (16–91%) compared with other seasons (1–30%). Although POC export associated with
some larger microzooplankton, such as tintinnids, can be significant (Romero-Ibarra & Silverberg
2011), these probably enter traps on marine snow as living members of the decomposer community.

Jelly falls—the mass sinking of carcasses of bloom-forming gelatinous zooplankton—have been
reported from around the world and episodically may lead to substantial, rapid export of POC to
deep ocean depths (reviewed in Lebrato et al. 2012) (Figure 1). The most commonly recorded
jelly falls are medusae (Billett et al. 2006, Yamamoto et al. 2008, Sweetman & Chapman 2011),
large colonial pyrosomes (Lebrato & Jones 2009, Lebrato et al. 2013b), and salps (Henschke et al.
2013, Smith et al. 2014). Because of the high sinking rates of jellies, the export efficiency of jelly
carbon is calculated to be high, especially at higher latitudes, where colder seawater temperatures
reduce rates of microbial decomposition (Lebrato et al. 2013a). The portion of jelly carcasses that
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Active transport: the
transfer of carbon and
nutrients from the
surface ocean to depth
via zooplankton
vertical migrations

are intercepted in the water column by pelagic consumers is unknown, but once on the benthos,
they can be rapidly consumed by deep-sea scavengers (Lebrato & Jones 2009, Sweetman et al.
2014). Although gelatinous zooplankton are considered low in individual carbon and nitrogen
content compared with crustaceans of comparable size (Lucas et al. 2011), large species have a
relatively high carbon content (Henschke et al. 2013), and the potential for substantial export is
high for all bloom-forming species.

7.2. Vertical Migration and Active Transport
Diel vertical migration (DVM)—the mass vertical movement of zooplankton (and fish) across the
world’s oceans between surface waters, where they feed at night, and the mesopelagic zone, where
they reside during the day—is another major zooplankton-mediated carbon export pathway
(Figure 1). When considered as a component of the biological pump, DVM is referred to as
active transport, to distinguish it from passive sinking of particles as measured by sediment traps
(or by 234Th:238U disequilibrium). Some of the POC ingested in surface waters each night by
diel migrators is transferred (i.e., respired as CO2, excreted as DOC, or egested as POC in
fecal pellets) at their daytime residence depths below the euphotic zone, and this flux can be
significant compared with sinking POC flux (e.g., Longhurst et al. 1990, Steinberg et al. 2000).
Although difficult to quantify and thus not always included, the mortality of diel migrators at
depth is an additional flux to the deep ocean (Zhang & Dam 1997, Al-Mutairi & Landry 2001).
Active transport of DOC and POC by DVM has also been suggested as a source of organic
carbon to help satisfy the metabolic demands of resident mesopelagic zooplankton and microbial
communities at depth (Steinberg et al. 2008a, Alonso-González et al. 2013; see also Section 7.3).
Furthermore, the C:N:P stoichiometry of dissolved inorganic and organic matter produced at
depth by migrators can be non-Redfield, potentially contributing to deep nutrient-ratio anomalies
(Steinberg et al. 2002) and preferential export of some elements—as is the case for phosphorus
in the North Pacific subtropical gyre (Hannides et al. 2009a,b).

The magnitude of active transport by diel migrating zooplankton and the relative importance
of active as opposed to passive transport vary regionally and seasonally, depending on migrator
biomass and taxonomic composition (see compilations in Takahashi et al. 2009, Putzeys et al.
2011, and Isla et al. 2015). Active transport of respiratory carbon generally increases with higher
migrator biomass (Figure 5a), and a higher respiratory flux results in the increasing importance
of active transport compared with passive sinking of POC (Figure 5b). Care must be taken in
comparing ecosystems, as some studies report only respiratory flux, whereas others include addi-
tional active fluxes such as DOC excretion, fecal pellet production, mortality at depth, or various
combinations thereof. Active transport also becomes relatively more important in carbon export
with increasing depth, as sinking particle flux decreases rapidly with increasing depth. Keeping
these considerations in mind, published studies have generally indicated higher migrant biomass
and active respiratory flux in more productive upwelling and coastal/mesotrophic ecosystems or
seasons compared with less productive oligotrophic systems or seasons. This trend is also apparent
in biogeochemical models of active transport by DVM (Bianchi et al. 2013). For example, in the
mesotrophic subarctic Pacific, the active transport of CO2 and DOC by migrator respiration and
excretion was 16–46 mg C m−2 d−1 (equivalent to 26–200% of sinking POC) measured by sedi-
ment traps at 150 m, compared with 2–8 mg C m−2 d−1 (equivalent to 11–44% of sinking POC)
in the oligotrophic North Pacific subtropical gyre (Steinberg et al. 2008b). However, the impor-
tance of active transport by DVM compared with passive sinking of particles is not necessarily
higher in more productive ecosystems or conditions, as low sinking POC fluxes in oligotrophic
regions would increase the relative importance of active transport. Additionally, in regions with
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Figure 5
Respiratory flux by diel vertical migration. Data are compiled from studies in a variety of locations in the North Atlantic and Pacific
and during different times of the year, showing (a) mean migrant biomass (night minus day biomass in the epipelagic zone) versus mean
respiratory (CO2) flux by diel vertical migration and (b) mean respiratory flux versus the equivalent fraction of particulate organic carbon
(POC) export from the epipelagic zone measured by sediment traps at 100–200 m. The sources for the data are given in the Supplemental
Appendix (follow the Supplemental Materials link from the Annual Reviews home page at http://www.annualreviews.org).

pronounced OMZs, active transport of respiratory CO2 by DVM may be reduced, as low-oxygen
conditions depress the respiration and excretion rates of some taxa (Kiko et al. 2015).

Another form of active transport of carbon is by ontogenetic (seasonal) vertical migration. Best
known for large subarctic copepods (e.g., Calanus spp. in the North Atlantic and Neocalanus spp.
in the North Pacific), the metabolism and mortality of overwintering adults at depth can annually
account for significant carbon export compared with passive sinking of POC. Near the end of the
spring bloom, adult copepods migrate to mesopelagic depths, where they spawn and eventually
die or are eaten by predators (or undergo diapause, a resting stage, if they have a life cycle of
longer than one year). Early estimates of active transport by seasonal migration in the subarctic
North Atlantic were low (Longhurst & Williams 1992), but Jónasdóttir et al. (2015) showed
that transport and metabolism of carbon-rich lipids by Calanus finmarchicus migrating annually
to depths of 600–1,400 m result in a carbon export equivalent to the deep sinking POC flux.
Importantly, this lipid pump is a direct transport of carbon below the permanent thermocline,
with little attenuation, that nearly doubles previous estimates of deep-ocean carbon sequestration
in the North Atlantic ( Jónasdóttir et al. 2015). Similarly, at higher latitudes in the Arctic Ocean,
seasonally migrating Calanus spp. (mostly large herbivorous C. hyperboreus and C. glacialis) actively
transport 3.1 g C m−2 y−1 below 100 m, representing ∼85–132% of the annual 100-m POC
passive flux, owing to the exceptionally large lipid reserves in arctic zooplankton from spring
grazing, which are respired at depth during a long overwinter period (Darnis & Fortier 2012).
In the subarctic North Pacific, active transport by seasonal migration of Neocalanus spp.
copepods (N. flemingeri, N. cristatus, and N. plumchrus) is comparably high, ranging from 2.0 to
4.3 g C m−2 y−1 below 150 m (Kobari et al. 2003, 2008). Similarly, in the subantarctic Southern
Ocean, active transport by N. tonsus is 1.7–9.3 g C m−2 y−1 (Bradford-Grieve et al. 2001).

7.3. Mesopelagic-Zone Processes
Mesopelagic zooplankton transform POC in sinking and suspended particles by consuming and
remineralizing them to CO2, repackaging the particles into fecal pellets with different sinking
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speeds and organic content (Wilson et al. 2008), or fragmenting sinking POC into smaller and
slower-sinking particles via feeding or swimming activities (e.g., Goldthwait et al. 2004, De La
Rocha & Passow 2007) (Figure 1). These processes, along with remineralization by bacteria,
cause a rapid attenuation of sinking POC with depth through the mesopelagic zone (Steinberg
et al. 2008a, Robinson et al. 2010). However, by feeding in surface waters and defecating at their
mesopelagic residence depths, diel vertical migrants create a vertical shunt that enhances POC
flux at depth but is missed by most sediment traps (Buesseler & Boyd 2009). Despite considerable
evidence from both gut contents (Lampitt et al. 1993, Steinberg 1995, Schnetzer & Steinberg
2002) and changes in particle abundances and size spectra with depth (Bishop & Wood 2009)
that mesopelagic zooplankton consume sinking particles, measurements of feeding rates on
detritus are rare (Dilling et al. 1998). Suspended particles can be repackaged to form new sinking
particles at depth, for example, by the mucous feeding webs of larvaceans (see Section 7.1), and as
evidenced by changing fecal pellet types with increasing depth (Wilson et al. 2008). Conversely,
zooplankton fragmentation of large detrital particles into smaller ones with larger surface areas
that promote growth of resident bacteria and protistan consumers has been suggested to increase
the nutritional content of otherwise poor substrates. This microbial gardening makes it more
nutritionally and energetically beneficial for zooplankton to fragment rather than ingest large
particles directly (Mayor et al. 2014).

The surface-ocean carbon supply ultimately fuels the metabolic requirements of the
mesopelagic community; however, regional measurements of POC export plus downward advec-
tion of DOC to the mesopelagic zone are often too low to meet the carbon demand by mesopelagic
zooplankton and bacteria (Steinberg et al. 2008a, Burd et al. 2010). Reconciling this apparent
mismatch has been a focus of recent studies. This carbon demand is partially met by DVM of
zooplankton feeding at the surface and by carnivory at depth, both of which are independent of the
consumption of sinking POC (Steinberg et al. 2008a). Other zooplankton-mediated processes,
such as fragmentation of large sinking particles or release of DOC from excretion or sloppy
feeding, can help fuel mesopelagic microbial metabolism and supply carbon back to the food web
(Anderson & Tang 2010, Giering et al. 2014). In addition, chemoautotrophic CO2 fixation sup-
ports abundant Crenarchaeota in the deep ocean and provides a source of autochthonous “new”
organic carbon to support mesopelagic food webs (Reinthaler et al. 2010). An additional consid-
eration is uncertainty in measurements and conversion factors, such as mesopelagic zooplankton
diets and AE, bacteria growth efficiency, or pressure effects on metabolic rates (Steinberg et al.
2008a, Burd et al. 2010). Giering et al. (2014) balanced a carbon budget for the mesopelagic zone
at a North Atlantic site in part by using the mixed-layer depth as the dynamic upper boundary
of the mesopelagic zone, rather than a set euphotic-zone depth. In sum, carbon transformations
by zooplankton and interactions between microbes and metazoans in the mesopelagic zone
have yet to be fully characterized and are needed to constrain and balance deep-ocean carbon
budgets.

8. LONG-TERM AND FUTURE CHANGES IN ZOOPLANKTON
CARBON CYCLING
Rising ocean temperatures, decreasing oxygen, ocean acidification (OA), eutrophication, overfish-
ing, and species introductions are changing plankton communities, and synergistic effects of these
factors could lead to widespread changes in zooplankton carbon cycling in the coming decades.
Temperature affects nearly all aspects of carbon flow through zooplankton either directly (rates
of feeding, metabolism, growth, and reproduction; e.g., Kjellerup et al. 2012) or indirectly (e.g.,
changes in surface-water stratification and vertical mixing affecting prey field). Thus, a warming
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Figure 6
Long-term latitudinal changes in copepod biodiversity and mean residence time above 50 m of sinking
copepod fecal pellets in the North Atlantic. (a,b) Mean spatial distributions (for time series from 1960 to
2007) of copepod biodiversity (panel a) and mean residence time of particulate organic carbon in sinking
copepod fecal pellets (panel b) above 50 m. (c,d ) Long-term latitudinal changes in copepod biodiversity
(panel c) and residence time of sinking copepod fecal pellets (panel d ) above 50 m, showing an increase in
recent decades for both in the north. Copepod biodiversity was measured by a first-order jackknife
performed on the Gini coefficient; higher values indicate greater diversity. The residence time of the fecal
pellets was modeled from size-derived relationships with copepod body size. Copepod body size, which is
negatively correlated with diversity, has been decreasing over time in northern latitudes coincident with
warming. Adapted from Beaugrand et al. (2010).

ocean has a multitude of potential effects, including alteration of the relative rates of production
and grazing resulting from different temperature dependencies of autotrophic and heterotrophic
rate processes, as suggested by the metabolic theory of ecology (e.g., Brown et al. 2004, Rose
& Caron 2007, Chen et al. 2012). Long-term changes in epipelagic zooplankton abundance,
distribution, and community structure in many regions are attributed to climate warming, with
associated changes in carbon cycling. In the North Sea, increasing sea-surface temperature has
led to a long-term decrease in the subarctic herbivorous copepod C. finmarchicus accompanied by
a long-term increase in large phytoplankton; the suggested mechanism for the latter is reduced
grazing pressure on diatoms, which would be predicted to increase export of diatom aggregates
and overall carbon export (Beaugrand 2009). However, a long-term increase in calanoid copepod
biodiversity and a decrease in body size in the same region lead to a modeled increase in the mean
residence time of sinking copepod fecal pellets (owing to their smaller size) above 50 m, potentially
reducing carbon export (Beaugrand et al. 2010) (Figure 6).

In the North Atlantic subtropical gyre, a long-term increase in epipelagic mesozooplankton
biomass was positively correlated with sea-surface temperature, water-column stratification, and
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PP, resulting in increased annual fecal pellet carbon export and a near doubling of diel vertical
migrator biomass and active transport of carbon (Steinberg et al. 2012). A long-term decline in
the carbon biomass of pelagic tunicates (mostly salps) in the California Current in the eastern
Pacific was also associated with increased water-column-density stratification and was consistent
with a long-term decline in the 3,500–4,000-m POC flux until approximately 1999 (Smith et al.
2006, Lavaniegos & Ohman 2007). In more recent years, episodic pulses of high salp biomass
and sinking POC as salp fecal pellets have been recorded in the same region (along with salp
carcasses, described above; Smith et al. 2014). A sea-surface-temperature warming anomaly from
2005 to 2007 in the Fram Strait entrance to the Arctic Ocean shifted the community structures
of both phytoplankton and zooplankton and decreased export flux. Lower fecal pellet carbon flux
and export of smaller fecal pellets during the warm period coincided with lower biogenic silica
fluxes, suggesting a change in feeding conditions from larger zooplankton feeding on diatoms to
smaller zooplankton feeding on smaller-sized phytoplankton (coccolithophores) (Lalande et al.
2013).

Ocean deoxygenation, including spreading coastal hypoxia and dead zones (Diaz & Rosenberg
2008, Levin & Breitburg 2015) and the global expansion of OMZs (Stramma et al. 2008, 2010; Gilly
et al. 2013), will likely have marked effects on zooplankton carbon cycling. The oxygen gradients
associated with OMZs structure zooplankton communities (Wishner et al. 2013), and hypoxia can
suppress zooplankton respiration rates (Maas et al. 2012, Teuber et al. 2013, Cass & Daley 2014).
Respiration by diel vertically migrating zooplankton intensifies oxygen depletion in the upper
margins of OMZs, focusing remineralization of organic carbon at these boundaries (Bianchi et al.
2013). Other processes attributed to strong vertical gradients in biological communities across
OMZs could enhance carbon export relative to non-OMZ regions. Roullier et al. (2014), for
example, found changes in particle size distribution, as well as increased particle abundance,
zooplankton abundance, and calculated carbon export in the lower oxycline of the Arabian Sea
OMZ, attributed in part to enhanced zooplankton feeding in the deep OMZ. A metabolic index that
combines the effects of increased ocean temperature and decreased oxygen predicted global habitat
compression of plankton biogeographic ranges (both poleward retreat and vertical contraction)
(Deutsch et al. 2015), which may serve to focus or intensify zooplankton-mediated carbon exchange
and export in these regions.

Absorption of increased atmospheric CO2 from human activity into ocean surface waters has
led to OA, “the other CO2 problem” (Doney et al. 2009). Known effects of increased CO2

and OA on zooplankton carbon cycling include metabolic suppression, as evidenced by de-
creased respiration rates in Antarctic pteropods (although the effect is modulated by food con-
centration; Seibel et al. 2012) and in tropical reef coral larvae (Rivest & Hofmann 2014). Most
calcifying organisms exhibit reduced calcification in response to OA (although there are excep-
tions; Riebesell et al. 2000) and sometimes dissolution of their shells and skeletons (Fabry et al.
2008). Ballast provided by calcite and opal significantly increased the sinking speed of fecal
pellets produced by copepods fed coccolithophorid and diatom diets, respectively, over the
sinking speed of pellets from copepods fed nanoflagellates (Ploug et al. 2008). A future de-
crease in carbonate ballast in fecal pellets and other particles would slow their sinking rates,
resulting in more organic matter being remineralized shallower in the water column (Bishop &
Wood 2009), which would reduce carbon sequestration flux (Passow & Carlson 2012). Although
research has made great strides in elucidating the effects of OA on marine organisms and ecosys-
tems, the physiological and other effects of OA on zooplankton have been studied in only a
handful of taxa, and thus the consequent effects on zooplankton and carbon cycling are largely
unknown.
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SUMMARY POINTS

1. Carbon flows through marine pelagic ecosystems are complicated by the phylogenetic
and functional diversity of planktonic consumers and the complex and multilevel trophic
organization of the food webs in which they operate.

2. At the extremes, zooplankton-mediated food-web linkages underlie the highly efficient
nutrient recycling that sustains high levels of phytoplankton productivity in the oligotro-
phic open oceans, as well as the efficient transfer of primary production to higher trophic
levels in the ocean’s richer regions.

3. Zooplankton impacts on ocean biogeochemical cycles are further complicated by the
variable efficiencies of bioenergetic processes (absorption, respiration, excretion, and
growth) that transform carbon fluxes through individuals and populations into dissolved
and particulate products with different food-web fates.

4. Carbon fluxes through the zooplankton are constrained on the global scale by the grazing
impacts of microzooplankton and the respiratory requirements of mesozooplankton, as
affected by biomass, size, and temperature.

5. Dissolved organic carbon release by zooplankton via sloppy feeding, excretion, egestion
of dissolved digestive products, and fecal pellet leaching supports an active microbial
loop.

6. Zooplankton contribute to biological pump export processes through a variety of mecha-
nisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations). The
relative importance of these different export mechanisms and the magnitude of their
combined contributions to carbon transfer into the ocean interior are highly dependent
on regionally variable plankton community structure.

7. Increasing ocean temperatures, decreasing oxygen, ocean acidification, eutrophication,
overfishing, and species introductions are already affecting plankton communities and
are predicted to result in widespread changes in zooplankton carbon cycling in the future.

FUTURE ISSUES

1. There is a need to resolve large uncertainties in trophic structure that significantly alter
mean outcomes and interpretations of carbon flows through zooplankton in food webs.
These uncertainties include, but are not limited to, the mean trophic pathway of mi-
crozooplankton production to mesozooplankton, the effects of mixotrophy on food-web
efficiency, and the details of linkages between zooplankton and bacteria.

2. Zooplankton roles and food-web controls on remineralization and organic matter degra-
dation in the mesopelagic zone, which are fundamental to defining carbon flux attenuation
and export variability, need to be better measured and understood.

3. Significant challenges remain in measuring key carbon flows through zooplankton, such
as a standard approach for assessing secondary production, or zooplankton-mediated
carbon export not measured by traditional sediment traps (e.g., jelly falls and active
transport via vertical migration).
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4. How zooplankton affect the stoichiometry between carbon and other key elements (ni-
trogen and phosphorus) in ocean biogeochemical cycles requires further study.

5. Substantial uncertainties also exist in climate impacts on regional scales, which may
follow expected (bottom-up) patterns of ecosystem response to changing temperature,
physics, and nutrient delivery or may diverge considerably because of altered biomass
and functions of key zooplankton species as a response to stressors.

6. Ecosystem and biogeochemical models, which currently represent the roles of zooplank-
ton simplistically, could better incorporate the diversity in zooplankton taxa, life history,
size, trophic ecology, and physiology to improve predictions of future changes in carbon
flows through zooplankton.
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Errata

An online log of corrections to Annual Review of Marine Science articles may be found at
http://www.annualreviews.org/errata/marine
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