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Global Carbon Budget
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Cemissions(t) - Catmosphere(t) + Cocean(t) + Cland(t)

3 sinks for anthropogenic CO, emissions:

(i) Atmosphere - Can be measured over time (global network of stations), well mixed
(i) Ocean - Few measurements over time, not well mixed

(iii) Land - Very difficult to detect, highly heterogeneous

Problem: | equation, 2 unknowns

Solution: Estimate either the land or ocean sink by indirect methods



Estimating the Ocean Anthropogenic
CO; Sink with Ocean Inverse Models
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Ocean inverse models take advantage of

two facts:

|. Anthropogenic CO; in the ocean can
be treated as a transient conservative
tracer (assuming no effect on biology),

DICoant and

2. The atmospheric boundary condition is
known.
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If we have a good estimate of ocean circulation/ventilation rates (very important) and air-sea gas
exchange (not as important), we can estimate the anthropogenic CO, uptake.

Examples: Mikaloff-Fletcher et al. (2006), Gruber et al. (2006), Khatiwala et al. (2009,2013),
DeVries (2014)
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Ocean Circulation Inverse Model

(OCIM)

The OCIM is a data-assimilated model of the climatological mean ocean circulation (state estimate):

 Resolution is 2° in the horizontal with 24 vertical levels

- Linearized dynamics

- Imposed sub-gridscale diffusivities (Redi + vertical w/ enhanced diffusivity in surface mixed layer)

- Momentum balance is adjusted to achieve maximal consistency with 4 physical circulation tracers
(T, S, A'*C, CFC-11) and 3 surface fields (air-sea heat‘and salt fluxes, and sea-surface height).

Temperature (C.1. 2°C)

Salinity (C.1. 0.2 psu)

A14G(C.I. 10%s)

==\ /I

R

60°S 30°S EQ 30°S 60°S

60°S 30°S EQ 30°S 608

D= i
= &

60°S 30°S EQ 30°S 60°S

CFC-11 (C.1. 0.5 pmoI kg

60°S 30°S EQ 30°S 60°S

60°S 30°S EQ 30°S 60°S

60°S 30°S EQ 30°S 60°S

60°S 30°S EQ 30°S 60°S

OCIM

Observations

Atlantic Ocean
averaged
OCIM (top)
and observed
(bottom)

OCIM has a realistic distribution of water masses and ventilation times. Should be good to
use for anthropogenic CO..



Anthropogenic Carbon Distribution in the Ocean

Total Ocean Anthropogenic
Carbon Content, 1780-2014
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Devries (2014), Global Biogeochemical Cycles
Khatiwala, DeVries, McKinley et al. (2015)



OCIM: Comparison to other methods

Global air-sea CO: flux
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OCIM and GOBMs roughly agree but SOCOM flux much higher. Need to correct for
riverine CO; degassing (not resolved in OCIM or GOBM:s).



Variability of the Oceanic CO; Sink
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Subtracting 0.7 PgC/yr
efflux of riverine CO>
from the SOCOM
models brings them in
line with OCIM. Similar
to Resplandy et al. (2018)
0.78 PgClyr.

The OCIM does not capture as much variability in the oceanic CO; uptake as the SOCOM or
GOBMs because OCIM assumes constant circulation and biology.

We re-assimilated the OCIM using decadal “chunks” of tracer data to see if we could capture

some of this variability (due to decadal variability in the ocean circulation).
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OCIM with decadally-varying
circulation

e OCIM fit to ocean tracer data (T, S, CFC-11, CFC-12, A'*C) from three different time periods:
pre-1990 (~1980s), 1990-1999 (1990s), and 2000-2012 (2000s).

* Mean circulation (steady-state) derived for each period.

* Prognostic C cycle model (OCMIP-2) coupled to OCIM and run from 1765-2014 under
observed atmospheric CO; concentrations.

e Circulation held steady prior to 1990, then abrupt switches applied at 1990 and 2000.

* Biological C cycling held constant (no change in biological pump).

* Change in “natural” CO; and “anthropogenic” CO; inventories separately diagnosed.

* Goal: Estimate effect of decadal variability in ocean circulation on oceanic CO3 sink.

e Caveats: Steady-state circulation within each time period ignores interannual variability.
Biological changes ignored.
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Recent increase in oceanic carbon uptake driven by
weaker upper-ocean overturning
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OCIM: Decadally-variable circulation
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1990s

Increased overturning increases
outgassing of C,.c in upwelling

regions. Increase in C;,: uptake
not enough to counteract C...
Ocean CO; sink weakens.

2000s

Reduced overturning decreases
outgassing of C,.: in upwelling
regions. Decrease in Cip
uptake not enough to
counteract increase in Cpa..
Ocean CO; sink
strengthens.



Decadal variability of ocean CO; sink
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The OCIM with decadally-variable circulation

matches well with the pattern of variability
from the SOCOM (pCO; flux mapping)
products.

Suggests observed decadal trends in ocean CO>
uptake due to changes in ocean circulation.

About 5-40% of the observed decadal variability
in the total land+ocean CQO; sinks could be due
to the ocean.



Regional decadal variability of ocean CO, sink

Global Ocean
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Climate-driven decadal variability of ocean CO, sink in
GOBMs
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We ran a constant-climate and
variable-climate simulation with
9 different GOBMs.The
difference between the two
runs is attributed to climate
variability.

Climate variability drove a
weakening CO; sink in the
1990s in 8/9 models. It drove a
strengthening CO> sink in the
2000s in 5/9 models.

In almost all regions of the
ocean, climate variability
enhanced the uptake of CO; in

the 2000s as compared to the
1 990s.



Implications for the terrestrial sink
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1990s: Terrestrial sink was
weakening. Only 4/14 DGVMs

agree. (Problem with LUC
estimates??)

2000s: Terrestrial sink was
strengthening. All the DGVMs

agree.

DGVM = Dynamic global
vegetation model



Conclusions

* An Ocean Circulation Inverse Model that assimilates ocean tracer data produces accurate
estimates of ocean CO; uptake. Results are available at CDIAC or (updated) from myself.

* Decadal-mean circulations that assimilate decadal-mean tracer data closely match estimates of
decadal variability from pCO2 mapping methods.

* Three independent methods (OCIM, ocean biogeochemical models, and pCO; flux mapping
products) agree on the magnitude of the mean ocean CO; sink, and on the sign of its decadal
trends in the 1990s and 2000s.

* Climate variability drives these trends, probably by the effect of global winds on ocean
circulation.

* We have a pretty good handle on the ocean CO; sink and it can be used to further constrain
the terrestrial CO3 sink.
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