

mol m⁻² yr⁻¹

The Southern Ocean plays a key role in the global carbon cycle

The Southern Ocean plays a key role in the global carbon cycle

The Southern Ocean plays a key role in the global carbon cycle

The Southern Ocean plays a key role in the global carbon cycle

Estimating the Southern Ocean carbon sink is challenging

- Observations: no direct measurements, low spatial coverage, Summer bias - Models: lack of observational constraints, complex processes to simulate

The Southern Ocean is the region of strongest disagreement

Overarching goal

Better quantify and understand the contemporary carbon sink in the Southern Ocean to improve future projections

Previous studies have identified issues with models

- Seasonal phasing of the fluxes
- → e.g. Lenton et al., 2013; Anav et al., 2013; Jiang et al., 2013; Kessler and Tjiputra, 2016; Nevison et al., 2016; Mongwe et al., 2018
- Inaccurate representation of flux intensity
- → e.g. Kessler and Tjiputra, 2016
- Physics would be the main driver
- → Orr et al., 2001; Ito et al., 2004; Lachkar et al., 2007; Pilcher et al., 2015; Galbraith et al. 2015

This study

1/ Revisit models' performance in light of new observational estimates

2/ Investigate the cause(s) of the disagreement between models and observations

Modelling center	Name	Vertical coordinate	Ocean resolution	Radiative/atm. forcing (time period)
CERFACS	CNRM-CM5	z	. 9	
IPSL	IPSL-CM5A-LR	z	0	
IPSL	IPSL-CM5A-MR	z		
MPI-M	MPI-ESM-LR	z	0 1º to 2º	historical
MPI-M	MPI-ESM-MR	X	0.4 10 2	(1996-2005)
NCC	NorESM1-ME	∠ Z		
NOAA-GFDL	GFDL-ESM2G	o isopycnal		
NOAA-GFDL	GFDL-ESM2M	z		
CMCC	CMCC-CESM	Z		
NSF-DOE-NCAR	NCAR-CESM1	z		
NOAA-GFDL	CM2.6	Z	0.1°	idealized 1%/yr (years 21-30)
Scripps	SOSE	Z	1/3°	historical (2008-2012)

 \rightarrow All models are climate models or Earth System Models

→ SOSE is an ocean-sea ice data assimilating model forced by atmospheric reanalyses

The Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM)

https://soccom.princeton.edu/

Autonomous biogeochemical profiling floats

- Deployment: Southern Ocean
- Time period: May 2014 May 2018
- Number of floats studied: 35 (out of 114)
- Variables measured: pressure, temperature, salinity, pH, dissolved oxygen (O₂), nitrate (NO₃)

Air-sea CO₂ flux estimate (Gray et al., 2018)

solubility from measured T and S *(Weiss, 1974)*

Oceanic partial pressure of CO₂ f(T,S,pH, Alk) calculated from measured T, S, pH and estimated Alk (Carter et al. 2016)

 $F = k K_0 \left(p C O_2^{oc} - p C O_2^{atm} \right)$

gas transfer velocity from measured T and S and wind reanalysis products (Wanninkhof, 2014) Atmospheric partial pressure of CO₂ from observations at Cape Grim, Australia

Method – Provinces

Annual air-sea CO₂ fluxes

- Almost all models simulate a sink in agreement with pCO₂ based estimates

- Estimates from SOCCOM floats show a very weak sink

Results – Causes for the disagreement

- Largest model spread of all the provinces and strong interannual variability

- Disagreement on the flux sign and magnitude between models and observations

- None of the models capture the strong outgassing observed in the ASZ

- Many models are out-of-phase with observations: outgassing (summer), uptake/weak outgassing (winter)

- None of the models reproduce the outgassing observed in winter

- Models producing a significant outgassing in winter show strong uptake in summer

Results – Causes for the disagreement

Results – Causes for the disagreement

Conclusions

How do models compare to recent observational estimates of CO₂ fluxes in the Southern Ocean?

- Strongest disagreement in the ASZ (sign and intensity), and in the Pacific sector
- Models do not reproduce the observed outgassing at the right time nor with the right magnitude
- Neither CM2.6 nor SOSE show significant improvement compared to the CMIP5 models

Why do models disagree with observations in the ASZ?

- Winds: Westerly winds too equatorward and/or too weak (weak upwelling)
- Temperature: Surface is too warm (*shallow mixed layer*)
- DIC: concentrations are too low (shallow mixed layer)

What is next?

Observations: more data in the next years

- Refine the flux estimates
- Increase the spatial coverage
- Give some insights into the interannual variability

Models: looking towards CMIP6

- Compare with CMIP5 models and identify the similarities and differences
- Focus analyses on the main drivers (wind, temperature, DIC, etc) of the fluxes
- Use SOSE to help identify the causes for the misrepresentation of fluxes

causes tor and

oce chilles workshop 2018

Large disagreement across observational products

Major uncertainties in estimating the carbon sink

- Summer bias
- Interannual variability

Comparison of wind stress

Effect of wind stirring

Effect of wind intensification

