GFDL's Contributions to CMIP6

John Dunne on behalf of the entire GFDL Model Development Team

OCB Ocean Carbon Uptake in CMIP6 Models Synthesis and Intercomparison Workshop December 8-9, 2018

Origins of GFDL CM4/ESM4 for CMIP6

GFDL's CMIP6 generation models: CM4 and ESM4

	CM4.0	ESM4.1
Atm. Dyn.	100 km, 33 levels	100 km, 49 levels
Atm. Chem.	aerosol (21 tracers)	aerosol+chem+ozone (103 tracers)
MOM6 Ocean	1/4°, 75 levels	1/2°, 75 levels
Ocean BGC	BLINGv2 (6 tracers)	COBALTv2 (33 tracers)
Land	LM4.0	LM4.1 - PPA
Sea Ice	SIS2	SIS2

AM4.0 annual mean TOA net Shortwave radiation (W/m2)

AM4.0 simulated aerosol optical depth compared to AERONET

Ocean Modeling with MOM6/SIS2

MOM6 unifies GFDL's ocean modeling efforts - best of MOM5 and GOLD

SIS2 modernizes our sea-ice model physics and dynamics

C-grid discretization (replaces B-grid)

No "Checkerboard" null mode

Less smoothing of forcing required

Better representation of topography and narrow channels

No need for "Cross-land mixing"

MOM6 and SIS2 are basis of OM4 ocean/ice component of CM4

Open development model (MOM6+SIS2)

All activity visible via GitHub

Lagrangian Vertical Dynamics

Arbitrary Lagrangian-Eulerian method (ALE)

Tracer advection is not required for gravity wave dynamics

Able to use a wide range of vertical coordinates

Implicit remapping replaces vertical advection

No vertical CFL limit on time steps

Ultra-fine vertical resolution possible

Permits sub-cycled gravity-wave dynamics vs. tracer advection

Reduces cost to add tracers.

CM4 vs CM2 at various resolutions: SST errors

- (GFDL's previous best simulation)
- We expect these can be improved further with higher ocean resolution as was seen going from CM2.5 to CM2.6 or with an eddy parameterization

Longitude [°E]

CM4 vs CM2.5/CM2.6: ocean temperature drift

- CM4's spurious heat uptake under pre-industrial forcing is similar to CM2.6
- CM2.5/CM2.6 comparison shows that CM4's eddy permitting resolution is a source of spurious heat uptake
- Heat uptake could be remedied by higher ocean resolution or an eddy parameterization

CM4 El Niño Southern Oscillation and Teleconnection

ESM4: Atmospheric Chemistry in the Earth System

Dust-ecosystems-climate interactions

- "Dusty" CM3 connects Australian dust
- emissions with ENSO
- ENSO creates precip anomalies =>dust anomalies.
- Dust optical depth anomalies are 30% up from seasonal mean
- Precip anomalies are 50% of seasonal mean

Evans, Ginoux et al., 2016, GRL

La Nina DJF composite anomalies

ດ precip (mm/day)

-2

Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) in ESM2 for CMIP5

Carbon Ocean Biogeochemistry and Lower Trophics (COBALT): A multi-stressor plankton food web model in ESM4 for CMIP6

Fe, N, P, Si

- More effective nutrient scavenging for small P, but more susceptible to grazing
- Longer food chain from small P to fish
- Zooplankton must compete with other loss processes for primary production
- Not all of what zooplankton eat makes it to the next trophic level
- Calibrated to diverse observation-based energy flow estimates

Stock et al., 2014, PinO, 120, 1-28

Amplification of ocean productivity changes

- Projected percent changes in mesozooplankton productivity are 2X primary productivity changes
- Large regional changes
- Quantitative attribution to the same planktonic food web characteristics that drive spatial gradients

Stock, C. A., J. P. Dunne, and J. G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), DOI:10.5194/bg-11-7125-2014.

GFDL Earth System Model Summary for CMIP6 (ESM4.1)

Includes:

- New Interactive atmospheric chemistry including improved Nitrogen, SO₄, and BVOC
 - New Sea salt emissions as a stronger function of temperature
 - Reduced N cycle including interactive SO4 and ocean-atmosphere NH3 emissions
 - Revised atmospheric dry deposition for consistency across tracers
 - New BVOC including isoprene and terpene
- Interactive Dust with dynamic vegetation
- COBALT Ocean biogeochemistry module for explicit treatment of zooplankton biodiversity
 - Revised physiology and remineralization
 - Interactive dust/Iron and NH4
 - Iceberg Iron (Laufkotter, Stock)

Some Early Looks at CM4 and ESM4 results

...or...

Beware the Superpolyna

Diagram of sensible-heat (open-ocean) and latent-heat (coastal) polynya formation. Image modified from *Ocean Circulation, 2nd Edition* by Open University, Butterworth-Heinemann Publishers, page 219.

Satellite view of polynyas (dark areas) near Oates Coast, Antarctica (solid white area at right of photo). —*Image courtesy of NASA.*

Polynas in CM4 prototype (black) and CM4.0 (red)

CM4 Weddell Sea Temp (dash Plan A; solid Plan C)

Lingering Concern for ESM4.1during the spinup

ESM4.1 Spinup

Let the Buyer Beware – super Polyna in Historical annual maximum sea ice extent

August Sea Ice Extent (m²)

GFDL Physical Climate update Summary for CMIP6

- AM4 includes improved resolution (100km, 33/49 layers), moist convection, mountain gravity wave drag, etc., and predicts aerosols from emissions with either full (ESM4) or light (CM4) chemistry.
- OM4 includes C-grid hybrid coordinate ocean with scale-depended physics and other numerical improvments
- CM4/ESM4 combine strengths of GFDL's CMIP5 models into two, related models based on the same code with differing emphasis on resolution and complexity.
- CM4's simulates very good surface climatology and ENSO variability.
- CM4 has drift but the drift is reduced relative to a previous GFDL model of comparable resolution.
- CM4 produces historical simulations of global temperature broadly consistent with observations.

GFDL Earth System Update Summary for CMIP6

- New Interactive atmospheric chemistry from CM3 including improved Nitrogen, SO₄, and BVOC interactions
- Interactive Dust/iron and NH₃
- COBALT Ocean biogeochemistry for explicit treatment of zooplankton biodiversity and other improvements... full fidelity assessment awaits
- Beware Heat Content Drift It's about half the historical signal.
- Beware the Superpolyna! Become disturbingly strong after 1100 years. We will need to run a historical before the polyna begin and conduct many ensemble members to damp out polyna variability
- Beware unequilibrated elemental cycles! Air Sea CO₂ Flux is well in equilibrium, but open oxygen, nitrogen and alkalinity cycles are still adrift larger than the forced signal.
- Scenario simulations beginning soon... hopeing for data availability by June, 2019