New observational constraints on the global ocean uptake of anthropogenic CO₂

CMIP6 workshop, December 7, 2018

Nicolas Gruber ETH Zürich, Switzerland.

and D. Clement, B. R. Carter, R. A. Feely, S. van Heuven, M.
Hoppema, M. Ishii, R. M. Key, A. Kozyr, S. K. Lauvset, C.
Lo Monaco, J. T. Mathis, A. Murata, A. Olsen, F. F.
Perez, C. L. Sabine, T. Tanhua, and R. Wanninkhof

Outline

Observations have provided critical constraints for ocean models

Summary & Conclusions

The oceanic Inventory

or how can we find the needle in the haystack?

Variability

why the ocean sink may be more variable than we had thought

INTRODUCTION

Ocean carbon cycle models tend to underestimate ocean uptake

At least those that contribute to GCP's annual budget

Current generation ocean carbon cycle models simulate an ocean uptake that is Λ is lower than the ocean inversion suggest

Redrawn from Le Quéré et al. (2017)

METHOD

Dealing with sparse data...

requires sophisticated analysis and mapping methods

INTERIOR OCEAN DATA

1982-1999 80°N 60°N 40°N 20"N EQ 20°S 40% 60°: 80*5 2000-2012 80°N b 60°N 40°N 20°N EQ 20"S 40°S 60% 80°S 110°W 60°W 10°W 50°F 100°E 150°F 160°W glodapv2

Clement and Gruber (1998)

eMLR(C*) method

CHANGE IN Cant

1x1°, 2007 minus 1994

METHOD

Dealing with sparse data...

requires sophisticated analysis and mapping methods

Interior changes of anthropogenic CO₂ (1994-2007)

Gruber et al. (in review)

6

RESULTS

Storage rate of anthropogenic CO₂ (1994-2007)

RESULTS

Decadal ant. CO₂ storage (1994-2007) vs total inventory

COMPARISON

Anomalous CO₂ storage (the role of climate variability)

COMPARISON

Zonal mean section of anomalous CO₂ storage (1994-2007)

Gruber et al. (in review)

Connecting the changes in the ocean interior to the sfc. fluxes

We can start to connect the ocean interior changes (in Cant) to the changes in the surface air-sea fluxes of (natural and ant.) CO_2 ...

Gruber et al. (2019)

A word on uncertainties

Systematic errors were estimated by creating an ensemble of 14 estimates, using different assumptions along the decision tree of the method.

Gruber et al. (in review)

CONCLUSION

This ocean interior data based provides a new anchor point

The new anchor point suggest an uptake consistent with the forward projection from the ocean inversion estimate, i.e., confirming that most ocean models tend to underestimate the ocean uptake. Redrawn from Le Quéré et al. (2017)

Implication for global carbon budgets

CO2 sources and sinks	1800 to 1994	1994 to 2007	
	(Pg C) (a)	(Pg C) (b)	
Constrained sources an	nd sinks		
(1) Emissions of Cant from fossil fuel and cement	244±20	94±5 (c)	1994-2007
production			Ocean uptake fraction for
(2) Increase of CO2 in the atmosphere	-165±4	-50±1 (d)	Anthropogenic CO_2 : 30±4
(3a) Uptake of C _{ant} by the ocean	-118±19	-33± 4(e)	/ 1994-2007
(3b) Loss of natural CO2 by the ocean	$7 \pm 10(f)$	5±3 (g)	Outgassing estimated from
(3) Net ocean CO2 uptake	-111±21	-28±5	Landschützer et al. (2016)
Inferred terrestrial bo	alance		
(4) Net terrestrial balance [-(1) -(2) -(3)]	32 ± 30	-16±7	1994-2007
Terrestrial balance			Ocean uptake fraction for
(5) Emissions of Cant from land use change	100 to 180	16±6(h)	contemporary CO_2 : 25±5
(6) Terrestrial biosphere sink [-(1)-(2)-(3)] -(5)	-68 to -148	-32±9	

Summary and Conclusions

- Thanks to large *international observational efforts*, we are
 now able to address decadal time-scale variability of the
 ocean carbon sink.
- These observations confirm that the ocean has taken up 30% of the anthropogenic CO₂ emitted into the atmosphere.
- The observations also reveal a substantial amount of variability in this uptake, including a possible loss of natural CO₂

These data can provide numerous new constraints for ocean models...

All data will be made available through NCEI: Globally gridded 1° x1° resolution, with uncertainties

An upcoming opportunity: RECCAP2

1st meeting: 18-21. March 2019: Japan

POTENTIAL TOPICS

- 1) Global ocean CO₂ flux variability over the last three decades: Models, observations, and processes
- 2) Global ocean storage change. Models, observations, and processes
- 3) The ocean carbon sink: the integrated view
- 4) Variability in the Southern Ocean carbon sink
- 5) Carbon sources and sinks of the global coastal region6)