Towards a better understanding of fish contribution to carbon flux

Ocean, Carbon, & Biogeochemistry Workshop March 4-5, 2019
Motivation

Ducklow, Steinberg, Buesseler 2001
Motivation

Herndl & Reinthaler 2013
Motivation

FISH!

Turner 2015
Motivation

Carbonates, too

\[
\text{Global New Production} = 0.7 - 1.4 \text{ Pg CaCO}_3 \text{ C year}^{-1}
\]

\[
\text{Fish Carbonates} = 0.04 - 0.11 \text{ Pg CaCO}_3 \text{ C year}^{-1}
\]

(High Magnesium calcites soluble at shallow depths)

>1 km Depth:
Total dissolution \(~0.41 - 0.5\) \text{ Pg CaCO}_3 \text{ C year}^{-1}

\[
\text{Sinking Flux} \sim 0.4 \text{ Pg CaCO}_3 \text{ C year}^{-1}
\]

\[
\text{Dissolution of lower solubility carbonates (calcites & aragonites)}
\]

Wilson et al. 2009
Motivation

Greatly limited number of studies on fish carbon flux

< 10 studies have estimated active transport in DVM fish

< 5 studies have focused on direct measurements of fish passive flux
Why Fish Carbon Needs to be Resolved

• Essential to determine its potential for a food source for benthic organisms

• Improve parameterization of key processes affecting the biological pump

• Develop more accurate regional and global carbon models

• Understand interannual and seasonal/spatial variability and long-term changes of fish fecal flux

• Evaluate the potential role of environmental factors and climate change on fish carbon flux
Project Goals

- Synthesize the existing research on fish carbon flux
 - Active and Passive flux
Project Goals

• Synthesize the existing research on fish carbon flux
 – Active and Passive flux
 – Identify species, major taxon groups, and habitats most frequently studied
Project Goals

• Synthesize the existing research on fish carbon flux
 – Active and Passive flux
 – Identify species, major taxon groups, and habitats most frequently studied

 – Attempt to estimate fish fluxes on larger scales (different ecosystems, regions, etc.) using two potential approaches:
 • Combining fisheries stock assessment data with existing fish flux data
 • Incorporating a fish component into biogeochemical models
 – Compare fish flux measurements to those reported for zooplankton
Project Goals

• Synthesize the existing research on fish carbon flux
 – Active and Passive flux
 – Identify species, major taxon groups, and habitats most frequently studied

 – Attempt to estimate fish fluxes on larger scales (different ecosystems, regions, etc.) using two potential approaches:
 • Combining fisheries stock assessment data with existing fish flux data
 • Incorporating a fish component into biogeochemical models
 – Compare fish flux measurements to those reported for zooplankton

= Paper #2
Project Goals

• Synthesize the existing research on fish carbon flux

• Recognize challenges in measuring fish carbon flux and discuss approaches to resolve them
 – Sampling approaches
 – Required fish information (species, abundance, biomass, spatial/vertical distributions, etc.)
Project Goals

- Synthesize the existing research on fish carbon flux

- Recognize challenges in measuring fish carbon flux and discuss approaches to resolve them

- Develop research priorities to fill the large gaps in understanding fish carbon flux
 - Define key laboratory and/or field studies
 - Upscaling measurements to regional & global estimates through modeling
Project Goals

• Synthesize the existing research on fish carbon flux

• Recognize challenges in measuring fish carbon flux and discuss approaches to resolve them

• Develop research priorities to fill the large gaps in understanding fish carbon flux

• Identify opportunities to obtain resources needed to move this research forward
Workshop Goals

• Finalize Paper 1: Synthesis, Challenges, Gaps, Research Priorities, Assign specific tasks with deadlines for completion

• Make as much progress as possible on Paper 2:
 – Finalize Approaches for Fish Biomass Estimates, Passive and Active Fish Carbon Fluxes, Comparisons to Total Carbon Flux and Zooplankton Flux
 – Assign specific tasks with deadlines to complete Paper 2

• Discuss Potential Proposals for Filling Gaps