Magnitude and timing of
ocean carbon uptake
variability constrained by
seawater pCO, time series
observations
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CARBON PROGRAM

Adrienne Sutton, NOAA Pacific Marine Environmental Laboratory, Seattle, WA and 30+ collaborators, e.g.

Synthesis and intercomparison of ocean carbon uptake in CMIP6 models Working Group and Workshop, 8 December 2018



Surface ocean carbon time-series

20°-
0°-

-20°-

B ship-based (ocean)

@® moored (ocean)
moored (coastal)

-40°+

-60°4

i I I 1 1 1 1 I 1

1 1
-180° -160° -140° -120° -100° -80° -60° -40° - e 20° 40° ° 80° 100° 120° 140° 160° 180°




NOAA surface ocean moored pCO, time-series
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Opportunities for connection to modeling

Compare observation vs model constraint of ocean’s [local] intrinsic variability of CO, flux.

e What is true intrinsic variability versus model spread/uncertainty?
e Are models underestimating seasonal-decadal variability in ApCO,? If so, why?
* How does variability impact detection/attribution of anthropogenic trends in CO, uptake?

Modeling community needs (I think...):

e easy, timely access to standardized climate-quality data

* winter measurements

e co-located oceanic and atmospheric observations

 ability to resolve variability of mesoscale eddies and boundary systems
e variability in carbon uptake and impact on trend detection/attribution



Opportunities for connection to modeling

Compare observation vs model constraint of ocean’s [local] intrinsic variability of CO, flux.

e What is true intrinsic variability versus model spread/uncertainty?
e Are models underestimating seasonal-decadal variability in ApCO,? If so, why?
* How does variability impact detection/attribution of anthropogenic trends in CO, uptake?

Observing needs:
e use answers to the above to identify priority areas to fill observing gaps, inform
development of new process studies, etc.



Modeling needs: easy, timely access to standardized climate-quality data
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https://www.earth-syst-sci-data.net/6/353/2014/essd-6-353-2014.html

Modeling needs: easy, timely access to standardized climate-quality data

noaa.gov,

Data quality
Moored pCO, system similar to underway methodology
Calibrated with reference gas in situ

Published SOPs

Lab and field verified uncertainty of +2 patm
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Data access
Via SOCAT
Via individual time series at

www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html|
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# T
#
#
#
#
#
#
#
#
#
#
#
#
#
E
#
#
E
#
#
#
#
E
#
#
#
#
#
#
#



https://doi.org/10.5194/essd-11-421-2019

Modeling needs: winter measurements

Temporal variability [local] of air-sea CO, flux
from 3-hourly measurements of air (~¥1m
height) and sea surface pCO, (~0.5m depth)
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Modeling needs: co-located oceanic and atmospheric observations

(b) Yearly CO, flux (c) Monthly CO, flux
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Modeling needs: resolve mesoscale eddies, boundary systems

Molemaker et al. 2015
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Modeling needs: resolve mesoscale eddies, boundary systems

from K. Donohue

from manuscript in prep

from manuscript in prep CO: Concentration at TAO (0, 110W)
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Modeling needs: resolve mesoscale eddies, boundary systems
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What is the census of eddies,
fronts, etc. and how do small scale
features impact CO, uptake?
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Modeling needs: variability impact on trend detection/attribution
Sutton et al. 2016
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Modeling needs: variability impact on trend detection/attribution
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Opportunities for connection to modeling

Compare observation vs model constraint of ocean’s [local] intrinsic variability of CO, flux.

e What is true intrinsic variability versus model spread/uncertainty?
* Are models underestimating seasonal-decadal variability in ApCO,? If so, why?
* How does variability impact detection/attribution of anthropogenic trends in CO, uptake?
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Opportunities for connection to modeling

Compare observation vs model constraint of ocean’s [local] intrinsic variability of CO, flux.

e What is true intrinsic variability versus model spread/uncertainty?
e Are models underestimating seasonal-decadal variability in ApCO,? If so, why?
e How does variability impact detection/attribution of anthropogenic trends in CO, uptake?

Observing needs:
e use answers to the above to identify priority areas to fill observing gaps, inform

development of new process studies, etc.
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