ICOS INTEGRATED CARBON OBSERVATION SYSTEM

An introduction to the Ocean Thematic Centre of the European RI ICOS

Richard Sanders, Andrew Watson, Erik Sandquist, <u>Benjamin Pfeil</u>, Ingunn Skjelvan, Ute Schuster, Jessica Thorn, Emil Jeansson, Steve Jones, Camilla Landa, Maren Karlsen, Tobias Steinhoff, Socatris Loucaides+++

National Oceanography Centre

Integrated Carbon Observation System (ICOS)

Scientific Mission:

- Increase fundamental understanding of carbon cycle, greenhouse gas budgets and perturbations, and underlying processes
- Increase ability to predict future changes
- Verify the effectiveness of policies aiming to reduce greenhouse gas emissions
- Foster technical and scientific innovation
- Contribute in education and capacity building

https://www.icos-ri.eu

ICOS Stations

NTEGRATE

DBSERVATION

134 Measurement stations12 Member countries

80 Ecosystem stations

33 Atmosphere stations

21 Ocean stations

including two stations in Greenland, one in French Guyana, La Reunion, Cape Verde (not visible here)

ICOS Data Flow

FLUXNET April 2014 Bill Stime

The Ocean Thematic Centre

ICOS Ocean Thematic Centre

Leadership and management

Who we are:

Centre, UK

s.loucaides at noc.ac.uk

ICOS

OTC tasks and mission

Labelling scheme for ocean stations

"ICOS shall provide harmonised and high-precision scientific data on carbon cycle and greenhouse gas budget and perturbations"

For the ocean this means

Quantifying air-sea CO₂ fluxes

Requires pCO₂ measurements

Assessing variability and drivers

Requires pCO_2 , one of A_T , pH, or DIC, dissolved oxygen/nutrients

Most suited for Carbon-VOS

Most suited for Fixed Ocean Stations

Labelling scheme

Carbon-VOS (Voluntary Observing Ship)

FOS (Fixed Ocean Sta<tion)

Class 2 (minimum required variables)

Class 1

 pCO_2 (± 2 ppm)

Alkalinity of DIC (additional variables) Oxygen

 pCO_2 (±10 ppm) Alkalinity or DIC Oxygen

Surface: Nutrients (nitrate, silicate, and phosphate)

*DIC = Dissolved Inorganic Carbon In addition, variables for validation must be sampled

Which precision do we actually need?

OBSERVATION

Which precision do we actually need?

The <u>weather</u> goal

- relative spatial patterns and shortterm variations
- supporting mechanistic response to and impact on local, immediate ocean acidification dynamics.

Implies an uncertainty of:

- pH ~0.02
- TA, DIC ~10 μmol kg⁻¹
- pCO₂ ~2.5% relative uncertainty

The <u>climate</u> goal

- to assess long-term trends with a defined level of confidence,
- supporting detection of the longterm anthropogenically driven changes in hydrographic conditions and carbon chemistry over multidecadal time scales.

Implies an uncertainty of :

- pH ~0.003
- TA, DIC ~2 μmol kg⁻¹
- pCO2 ~0.5% relative uncertainty

FOS:

- Validation in-situ
 - Preferably monthly discrete samples from station site
 - At minimum, discrete samples during deployment and when the instruments are retrieved
 - Important with a sufficient amount of parallel samples (TRIPLICATES)
- Use of discrete samples for validation of pCO₂
 - Use the pair [TA + pH] or [DIC + pH], do NOT use [TA + DIC]
 - Use K1 and K2 from Lueker et al. (2000) Best practices from Dickson et al. (2007)
 - Use up to date calculation program
 - If you want to include error calculation (error.m) from Orr et al. (2018) you also need to use his CO2sys.m
- Discrete samples of TA, DIC, and/or pH quality
 - OTC need statement from each laboratory regarding quality of measurement (accuracy of samples and how this is achieved, e.g. CRM from Dickson)

Saildrone

- Saildrone (Canadian) 7 m long vessel
- Wind and wave driven, 2 to 8 knots
- Equipped with sensors for pCO₂, O₂, SST, SSS, wind, pH, etc. (https://www.saildrone.com/)

heavor	Height / Depth frm Waterline	Manufactore & Model		
1. PAR Sensor	2.2 m	LECer LI-1925A		
2 3D L'Itrasonic Anenninenter 20 Hz	4.5.00	Windmaster		
3. Cameran Up/Down/Left/Right-wride angle	2.2.0	Subfrom Cuntom Drags		
& SST IR Pyrameter	2.5 m	Heigeniga KT151		
5 ATRII - S3 with Radiation Shield	2.2 m	Retornie 14C2		
6. Hansmeirs: Pressure	0.2 m	Vassala PTB 210		
7 Magnetometer	0.2.05	Bartington MAG 548		
Dissolved Oxygan	0.5 m depth	Aanderga 4831		
9. Thermonal integraph	0.5 m depth	Teledyne Citadel		
10 Phonometer edom fluorescence and backscatter	0.2 m depth	Wetlahs Traffet		
11. PMEL-provider CTD	0.5 m depth, strapped to keel	Seabord SBE37SM		

Saildrone - in situ validation of FOS

- Joint proposal (Geomar/Cape Verde Observatory and OTC) submitted to Saildrone Nov 2018
- Aim to use Saildrones, equipped with calibration instruments to validate Fixed Ocean Stations within ICOS
- Mission supported by Saildrone
- Start in Cape Verde 1 November 2019
- Will arrive in Mediterranean early 2020 and Italian stations approx. February 2020

Data Lifecycle Within OTC

QuinCe – general overview

- <u>online tool</u> developed by OTC for the <u>submission</u>, <u>processing</u>, <u>data</u> reduction</u>, <u>quality</u> control and <u>dissemination</u> of <u>data</u>
- receives <u>raw data directly</u> from the stations' instruments, performs all necessary calculations and performs automated quality control routines to highlight data that is likely to be of poor quality (like range checks and spike detection)
- station <u>PI</u> can <u>review</u> the data and perform their own <u>quality control</u> before approving it for submission to the OTC.
- once submitted, the data will automatically be archived at the CP and made available to other relevant external third level data products (e.g. the SOCAT Surface Ocean CO2 Atlas, CMEMS).

Automatic data checks

Quality Control for Biogeochemical Data - Workshop September 24 and 25 at NOAA/PMEL in Seattle, WA

Objectives

- Workshop deliverables will be guidance that can be applied by the ICOS OTC and NOAA OAP developer groups towards an implementable solution
- Determine what degree of level 1 and level 2 quality control is acceptable for which variables, and what can be implemented by developer groups
- Determine what degree of QC automation is possible for both level 1 and level 2.
- SOCAT, GLODAP, ICOS, NOAA OAP, US BGC ARGO networks participated

Ocean Thematic Centre

1st ICOS OTC *p*CO₂ instrument

When?

24. August - 04. September 2020

Where?

Flanders Marine Institute (VLIZ) in Oostende/Belgium

What?

In the recent years new technologies are involving and a whole new generation of sensors and instruments measuring pCO_2 the surface ocean and below entered the market. This spans from «classical» equilibrator based systems with new CO_2 detectors to membrane based sensors that can be submerged.

The aim of this exercise is

 the comparison of instruments and sensors that are (or will be) used within the ICOS community over a range of temperatures and pCO₂.

 to engage instrument suppliers to work together with the observational community to reach a high level of standardization in operating pCO₂ sensors and instruments.

 to give answers to the community of choosing the appropriate sensor for their application.

 <u>Contact:</u>
 ICOS OTC, Tobias Steinhoff tost@norceresearch.no

ICOS

Thank you! For more information please visit https://otc.icos-cp.eu

ICOS Oceans CO₂ sensors - moorings

- Membrane equilibration
- IR CO₂ detection
- Auto zeroing
- Pre/post calibration necessary

Sunburst SAMI-CO₂

- Membrane equilibration
- colorimetric reagent method

- Pro Oceanus CO₂-Pro
- Membrane equilibration
- IR CO₂ detection
- Auto zeroing

ICOS INTEGRATED CARBON OBSERVATION SYSTEM

Photos: http://sunburstsensors.com, http://pro-oceanus.com, https://www.kongsberg.com²²

Recommendations for ocean stations

• If a station does not follow SOPs, the station must provide evidence that their station meet the OTC requirements

Carbon-VOS

- Calibration frequency
 - Temperature and pressure sensors every two years at calibration facility, in-house every two years
 - LICOR every five year at calibration facility
- Equilibrator pressure
 - Should be measured by an absolute pressure sensor in the Wet Box /equilibrator
- Atmospheric xCO₂ measurements
 - Compared with nearby atmospheric station (Global View)
 - Wait for outcome from RINGO
- Atmospheric pressure
 - Changed to a core parameter, accuracy ± 1 mbar

ICOS INTEGRATE

Fixed Ocean Station (FOS):

- pCO₂ accuracy
 - Changed from $\pm 5 \mu$ atm to $\pm 10 \mu$ atm
- Dissolved oxygen requirements released to 2%
- Calibration frequency
 - pCO₂ at factory or calibration facility prior to deployment (Contros, Pro-Oceanus, SAMI)
 - Post deployment calibration for Contros
 - O₂/temperature/salinity prior to deployment
- Equilibration time for pCO₂ sensor (Contros and Pro-Oceanus, IR detection)
 - If no equilibration evidence during deployment, such evidence should be provided from a laboratory test prior to deployment

Network design

- -Evolve the network towards a state of high level robustness and optimal structure
- -Deliverable Network Design (continuous): Production and implementation of a roadmap aimed at helping the MSA produce a robust and optimally structured network. -refreshed annually

Accuracy of measurements

According to GOOS EOV's and the GOA-ON (Newton et al., 2014):

The "weather" goal is defined as measurements of quality sufficient to identify

- relative spatial patterns and short-term variations,
- supporting mechanistic response to and impact on local, immediate ocean acidification dynamics. This implies an uncertainty of:

```
pH ~ 0.02
TA and DIC ~10 \mumol kg<sup>-1</sup>
pCO<sub>2</sub> ~ 2.5% relative uncertainty
```

The "climate" goal is defined as measurements of quality sufficient

- to assess long-term trends with a defined level of confidence,
- supporting detection of the long-term anthropogenically driven changes in hydrographic conditions and carbon chemistry over multi-decadal time scales.

This implies an uncertainty of :

```
\text{pH}\sim0.003
```

TA and DIC $\sim 2~\mu mol~kg^{-1}$ $pCO_2 \sim 0.5\%$ relative uncertainty

Carbon-VOS Calculated carbon system using fCO2 and a 2nd carbon variable and uncertainties $u(fCO_2) = 2 \mu atm$, $u(DIC) = u(TA) = 2 \mu mol kg^{-1}$; u(pH) = 0.001

BSERVATION

Carbon-VOS Calculated carbon system using fCO2 and a 2nd carbon variable and uncertainties $u(fCO_2) = 2 \mu atm$, $u(DIC) = u(TA) = 2 \mu mol kg^{-1}$; u(pH) = 0.001

BSERVATION

Calculated carbon variables using fCO2 and a 2nd carbon variable and uncertainties $u(fCO_2) = 10 \mu atm$, $u(DIC) = u(TA) = 2 \mu mol kg^{-1}$; u(pH) = 0.001

INTEGRATED CARBON OBSERVATION

FOS

ICOS Oceans CO₂ sensors – Carbon-VOS

Water/air equilibrator based systems

- Standard: General Oceanics
- Several custom built systems
- Bubble/spray... equilibration
- IR CO2 detection (other detectors possible)

SubCtech OceanPack pCO2

- Membrane equilibration
- IR CO₂ detection

NTEGRATED

DBSERVATION

• Auto zeroing, standard gases possible

Contros HydroC CO₂ FT

- Membrane equilibration
- IR CO₂ detection
- Auto zeroing
- Pre/post calibration necessary

QuinCe - online tool for data reduction and quality control of surface ocean fCO2 data

QuinCe - Motivation

- A single, centralised tool data from all sources is treated with the same community-approved algorithms
- Removes code development responsibilities from scientists
- Open Source code increases traceability and transparency
- Reduces data handling work required by scientists
- Flexible architecture will allow shorter development time for new projects using different types of data

QuinCe - Features

- Upload data in any text format
- Individual sensor calibration adjustments can be applied
- Data reduction is performed automatically, with calibration to gas standards
- Automated QC routines detect common issues
- Extensive plotting and mapping tools for manual QC
- All QC decisions (automatic and manual) are recorded for future traceability
- Automatic submission to ICOS, CMEMS INSTAC and SOCAT
- Near Real Time processing allows fully automatic data flow from ship to publication within minutes

QuinCe - Future developments

- Complete metadata integration
- More intelligent automatic QC routines based on previous data sets and external data sources
- Uncertainty propagation
- Longitudinal study of instrument performance
- More variables (pH, O2 ...)

Name			Run Types	4	Other info		
0/1	Intake Temperature	1 Salinity	0	Equilibrator Temperature	0		
0	Equilibrator Pressure (differential)	Atmospheric Pressure	0	(xH ₂ O	0		
0	Other Temperature	Other Pressure	0	Air Flow	0		
0	Pump Speed	D					
	0/1	Files and Columns 0/1 Intake Temperature 0 Equilibrator Pressure (differential) 0 Other Temperature 0 Pump Speed	Files and Columns 0/1 Intake Temperature 1 Salinity 0 Equilibrator Pressure (differential) 0 Atmospheric Pressure 0 Other Temperature 0 Other Pressure 0 Pump Speed 0	Files and Columns Run Types 0/1 Intake Temperature 1 0 Equilibrator Pressure (differential) 0 0 Other Temperature 0 0 Other Temperature 0 0 Pump Speed 0	Files and Columns Run Types 0/1 Intake Temperature 1 0 Equilibrator Pressure (differential) 0 0 Equilibrator Pressure (differential) 0 0 Other Temperature 0 0 Other Temperature 0 0 Pump Speed 0		

TSG 🗙 CO₂ 🗶

- Date/Time	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9	Column 10	Colum
	1	57.14566	8.42750	0.00000	21.530579	5.6550	5.4621	Date/Time		3.8578	0.69€
No columns assigned	2	57.14566	8.42666	0.00278	21.530694	5.6713	5.4946	Longitude		3.8578	0.69€
	3	57.14550	8.42566	0.00556	21.530810	5.6929	5.4994	Latitude		3.8578	0.69€
- Position	4	57.14550	8.42482	0.00833	21.530926	5.7067	5.5232	Latitude		3.8505	0.694
	5	5 57.14550 8.42382 0.01111 21.531042 5.7265 5.5394 Run Type		3.8432	0.693						
Longitude	6	57.14550	8.42300	0.01389	21.531157	5.7420	5.5475	Intake Temp	erature	3.8505	0.694
Column: Column 3 🗙	7	57.14550	8.42200	0.01667	21.531273	5.7592	5.5674	Salinity		3.8358	0.692
Format: 0° to 360°	8	57.14550	8.42116	0.01944	21.531389	5.7765	5.5845	Equilibrator	3.8358	0.692	
Latitude	9	57.14550	8.42016	0.02222	21.531505	5.7902	5.5896	Temperature		3.8285	0.691
Column: Column 2 ×	10	57.14550	8.41932	0.02500	21.531620	5.8040	5.5920	Equilibrator	Pressure	3.8358	0.692
Format: -90° to 90°	11	57.14550	8.41832	0.02778	21.531736	5.8212	5,5908	(absolute)		3.8285	0.691
Palmana Pasisian Cila	12	57.14550	8.41750	0.03056	21.531852	5.8333	5.6078	(differential)	ressure	3.8212	0.689
Primary Position File	13	57.14550	8.41650	0.03333	21.531968	5.8393	5.6163	Atmospheric	Pressure	3.8285	0.691
Primary position hier NO	14	57.14550	8.41566	0.03611	21.532083	5.8419	5.6146		3.8285	0.691	
Set As Primary Position File	15	57.14550	8.41466	0.03889	21.532199	5.8504	5.6276	xingo		3.8285	0.691
Set As Frinary Position The	16	57.14550	8.41382	0.04167	21.532315	5.8608	5.6295	CO2		3.8212	0.689
	-							Other Tempe	erature		
								Other Pressu	re		
								Air Flow			
			Add F	ile				Water Flow			
								Pump Speed			
		-	1. 1. 1.	-							
		Cancel	Bac	ĸ	Nexa						

• Excessive gradients during a certain period

Benguela Stream (Labelling) - Standard Concentrations

Deployment Date

Select the date on which the standards were deployed

.

2014-06-24

Standard Concentrations

Enter the concentration for each gas standard

Standard	Concentration		
000	0.0		
250	260.36		
350	361.14		
450	460.69		

Calibration Date

Select the date on which the calibration was performe

201	5-0)4-28
-----	-----	-------

1

0	Save

Cancel

Calibration coefficients

Enter the calibration coefficients for each sensor

Sensor	Intercept	x	
Intake Temperature: Aanderaa	0.0	1.0	
Salinity: Seabird	0.0	1.0	
Equilibrator Temperature: PT100 (Top)	0.9721	9.8304	
Equilibrator Temperature: PT2000 (Bottom)	0.0	1.0	
Equilibrator Pressure: Omega	878.41	40.377	

Date	Longitude	Latitude	Intake Temperature	Salinity	Equilibrator Temperature	Equilibrator Pressure (differential)	Ambient Pressure	xH2O	CO2	fCO2	Automatic QC
2019-04-14 12:03:07	-25.537	59.076	7.557	35.000	7.740	0.160	995.410	1.430	425.800	412.789	Good
2019-04-14 12:04:39	-25.526	59.078	7.575	35.000	7.780	-0.810	995.200	1.430	425.340	411.561	Good
2019-04-14 12:06:11	-25.515	59.079	7.563	35.000		460			425.030	408.524	Bad
2019-04-14 12:07:43	-25.505	59.081	7.563	35.000					425.310	411.816	Good
2019-04-14 12:09:15	-25.494	59.083	7.559	35.000	*	Set wore hag for 4 row	5		426.070	410.658	Questionable
2019-04-14 12:10:47	-25,483	59.084	7.558	35.000	WOCE Flag:	Bad			426.710	411.097	Questionable
2019-04-14 12:12:19	-25.473	59.086	7.555	35.000	L L			-	426.750	415.517	Good
2019-04-14 12:13:51	-25.463	59.087	7.559	35.000	Comment:				426.930	412.960	Good
2019-04-14 12:15:23	-25.452	59.088	7.554	35.000	Moisture value	e invalid			427.340	407.477	Bad
2019-04-14 12:16:55	-25.442	59.090	7.549	35.000					427.770	413.017	Good
							1				

Save

Cancel

Carbon-VOS

Variable	Frequency	Accuracy	Required for Class
Sea surface fCO ₂	Quasi-continuous	±2 μatm	2
Intake temperature (SST)	Continuous	±0.05 °C	2
Water vapour pressure	Continuous	±0.5 mbar	2
Equilibrator pressure	Continuous	±2.0 mbar	2
Equilibrator temperature	Continuous	±0.05 °C	2
Delta-T (Intake/Equilibrator temperature difference)	Continuous	< 1.5 °C (normal) < 3 °C (ice edge)	2
Sea surface salinity (SSS)	Continuous	± 0.1 psu	2
Atmospheric xCO ₂	Quasi-continuous	±1 μatm	1
Alkalinity (TA)			1**
Dissolved Inorganic Carbon (DIC)			1**
рН			1**
Dissolved oxygen		±2% #	1
Dissolved nutrients		±1%* #	1

* Currently no sensors available with this accuracy

** At least one of these variables must be measured

[#] At least one of these variables must be measured

FOS

Variable	Frequency	Accuracy	Required for Class
Sea surface fCO ₂	>1 day ⁻¹ />3 day ⁻¹	±10 µatm	2
Sea surface temperature	>1 day ^{_1} />3 day ^{_1}	±0.02 °C	2
Sea surface salinity	>1 day ⁻¹ />3 day ⁻¹	±0.03 psu	2
Alkalinity			2**
Dissolved Inorganic Carbon			2**
рН			2**
Dissolved oxygen		±2%	1
Dissolved nutrients		±1%*	1

* Currently no sensors available with this accuracy ** At least one of these variables must be measured

