

EarthCube

EarthCube (EC) is a community-driven activity to transform research in the academic geosciences community.

Geoscience Directorate (GEO)

Computer,
Information Science
& Engineering
Directorate
(CISE)

EarthCube

Key principles guiding community-driven development of EarthCube cyberinfrastructure:

- Promote standards for interoperability;
- Leverage advanced technologies to better integrate, visualize, and analyze data;
- Democratize and improve access to data

EarthCube Community

2,500 contributors

WHOI image archive

EarthCube Organization: Science Committee

- Maintains a connection between EC academic, geoscience, and technology communities
- Ensures that end-user geoscientist needs, requirements, and aspirations are identified and prioritized.

EarthCube Organization: Technology and Architecture Committee

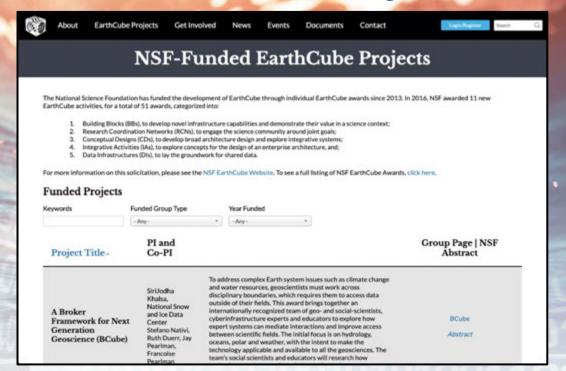
- Facilitates and stewards development of the EarthCube technology and ongoing architecture.
- Coordinates with the Science Committee to ensure that scientific research needs drive EarthCube architecture.

EarthCube Organization: Council of Data Facilities

- Provides a collective voice for member data facilities to the NSF
- Identifies, and promotes standards and best practices
- Identifies and supports the development/use of shared infrastructure
- Fosters innovation through collaborative projects

EarthCube-Driven Projects

Funding projects since 2013:


- RCNs Bring communities together to formally articulate cyber needs (10),
- Building Blocks Tools and technologies that address those needs and gaps in current Geo CI (26),
- Conceptual Designs Explore possible cyber architectures (3),
- Integrative Activities Engage scientists to solve domain Cl challenges (20),
- Data Infrastructure Fill gaps in community data capabilities (2)

EarthCube-Driven Projects

Learn More...

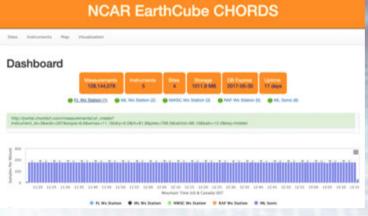
https://www.earthcube.org/info/about/funded-projects

EarthCube-Driven Projects

Learn cean Protein **EarthCube Tools Inventory** More... EarthCube Tools Designed for Scientists as End Users SeaView Table Key Readiness: (on a 1-5 scale) 1/2/3 - "in progress" Short Tool Description: Real-time Data provide an easy-to-use system to acquire, navigate CHORDS

EarthCube: Community Resource

The nexus of science and cyber technology



Cloud-Hosted Real-time Data Services - CHORDS

You put data into CHORDS like this: http://myportal.org/measurements/url_create?instrument_id=25&wdir=038&wspd=3.2

> You get data out of CHORDS like this: http://myportal/api/v1/data/3.csv?last

袋UCAR

GCOCODES

Geoscience Cyberinfrastructure for Open Discovery in the Earth Sciences

GeoCODES is an emerging resource discovery platform comprised of intuitive web-based tools, REST APIs, and Python, R, and MATLAB notebook integration for a variety of services.

The GeoCODES platform will enable resource registration, discovery, and access by applying web standard practices, community engagement, and cloud-based technologies and interfaces.

GeoCODES is a computational services platform for accelerating multi-domain geoscience research and is the integration of four subaward projects managed and led by the EarthCube Science Support Office at UCAR in Boulder, CO.

EarthCube Data Registry

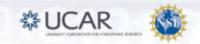
An EarthCube resource for finding and accessing data through the following data providers:

BCO-DMO • MagIC • Open Typography • UNAVCO

Open Core Data • IEDA • Linked Earth • Neotoma • BALTO

R2R • CHORDS • IRIS • Arctic Data Center • CUAHSI

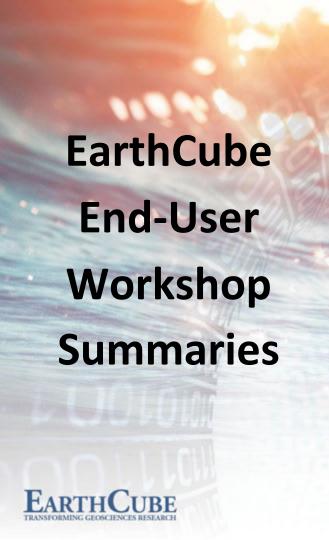
*in progress



EarthCube Resource Registry

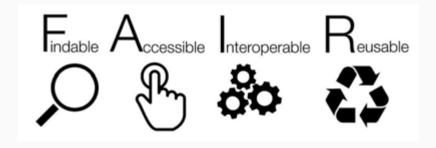
A developing EarthCube resource for finding and accessing cyberinfrastructure components, tools, and data access points developed through 60+ EarthCube funded projects (and possibly others).

Discussion Guidance



1. Leverage Existing Resources

Review EarthCube End-User Workshop summaries


Be aware of existing community standards and specifications

https://www.earthcube.org/info/about/end-user-workshops

- Meetings of Young Researchers in Earth Science (MYRES) V: The Sedimentary Record of Landscape Dynamics
- Envisioning Success A Workshop for Next Generation EarthCube Scholars and Scientists
- Structural Geology and Tectonics
- EarthScope
- Experimental Stratigraphy
- Shaping the Development of EarthCube to Enable Advances in Data Assimilation and Ensemble Prediction
- Engaging the Critical Zone Community to Bridge Long Tail Science with Big Data
- Envisioning a Digital Crust for Simulating Continental Scale Subsurface Fluid Flow in Earth System Models
- Cyberinfrastructure for Paleogeoscience
- Education
- Petrology and Geochemistry
- Sedimentary Geology
- Community Modeling
- Integrating Inland Waters, Geochemistry Biogeochemistry and Fluvial Sedimentology Communities
- Deep Seafloor Processes and Dynamics
- Integrating Real-time Data into the EarthCube Framework
- Ocean 'Omics
- Developing a Community Vision of Cyberinfrastructure Needs for Coral Reef Systems Science
- Bringing Geochronology into the EarthCube Framework
- Articulating Cyberinfrastructure Needs of the Ocean Ecosystem Dynamics Community
- Engaging the Atmospheric Cloud/ Aerosol/ Composition Community
- Developing a Community Vision of Cyberinfrastructure Needs for Coral Reef Systems Science
- Rock Deformation and Mineral Physics Research
- Science-Driven Cyberinfrastructure Needs in Solar-Terrestrial Research
- Increasing the Access to and Relevance of Marine Seismic Data

3. Emphasize Community Principles

https://www.force11.org/software-citation-principles

https://doi.org/10.25490/a97f-egyk