National inventories of forest ecosystem carbon stocks: documenting impacts of resource management on watershed carbon dynamics

Hobie Perry, Linda Heath; USFS, Northern Research Station
Mike Amacher; USFS, Rocky Mountain Research Station

Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, 6–8 May 2008
Outline

1. Background of FIA Program
2. Analysis & Reporting
3. Conclusions
1 Background
Net US C sequestration, LULUCF

Source: EPA (2008), includes all effects (all are net sinks, no non-CO₂)

2006

-1000 -800 -600 -400 -200 0

Landfill Yard Trim
Ag Soils
Urban Trees
Forest Products
Forest Ecosystem

15% of 2006 U.S. CO₂ emissions

11%
4%
13%
76%
National program goals for FIA

To conduct strategic forest inventories of the United States to estimate:

- the extent of forest land;
- the volume, growth, and removal of forest resources; and
- the health and condition of the forest.
Strategic objectives

- National design standards
- Standardized estimation
- Data released at prescribed intervals
- A national database with user-friendly access
- Nationally consistent reports (5 years)
- Peer review/publication of outputs/procedures
FIA samples in 3 phases...

Phase 1
3,000,000 points

Phase 2
125,000 plots (1:6,000 acres)

Phase 3
7,800 plots (1:96,000 acres)
using a national plot design.
How do we calculate carbon stock estimates from forest inventory data?

1. Calculate biomass and convert to carbon (carbon = 50% of dry weight biomass)

2. Estimate forest floor C with simple relationships

3. Estimate soil C based on STATSGO, coupled with historical land use change and assumptions of soil dynamics following land use change and disturbance

+ Sum carbon pools
Forest Carbon Stocks

- Standing dead trees
- Soil organic matter (1 m)
- Forest floor
- Belowground biomass
- Aboveground biomass = Live trees + understory
- Down dead wood
When did the annual inventory begin?

- **1998**
- **1999**
- **2000**
- **2001**
- **2002**
- **2003**
- **2004**
- **No data**

Sources: U.S. Forest Service, Forest Inventory and Analysis program, FIADB3. Geographic base data provided by the USDA Agricultural Statistics Service. FIA data and tools are available online at http://fiatools.fs.fed.us.

Which forest types and activities are considered?

- All forest types meeting definition of forest
- All ownerships
- All ages
Major factors affecting forest C

- **Region**
 - Northeast, Pacific Northwest

- **Forest Type**
 - Douglas-fir, Oak/Hickory

- **Site Quality**
 - High, Medium, Low

- **Prior Land Use**
 - Cropland, Pasture, Forest

- **Age or Volume**

Image courtesy forestryimages.org
2 Analysis and reporting
National GHG reporting to UNFCCC

- US EPA Annual Greenhouse Gas Emissions and Sinks inventories
 - All sectors
Forest-types of the USA

Results from international reporting (area changes)

Source: Table 7.5, Review draft 1990–2006 EPA GHG Inventory.
Results from international reporting (stock changes)

Source: Table 7.7 and 7-9, Review draft 1990–2006 EPA GHG Inventory.
Includes all forest ecosystem carbon components, based on FORCARB2 and 2002 RPA Forest Data.
Change in live-tree forest carbon stocks includes estimated changes in coarse roots, stems, branches, and foliage. FIA plot data are converted into county-level estimates using the FORCARB2 model (EPA 2007, Smith and others 2007). These estimates are net changes, and include the effects of harvest and land use change.

The atmosphere is the common frame of reference in carbon accounting. Losses from the atmosphere—forest carbon sequestration—are denoted by negative numbers (blue); emissions to the atmosphere—losses of forest carbon—are represented by positive numbers (red).
Percent of estimate from “measured” FIA data

- P3 data is being integrated now, so percentage will increase substantially
- Change estimation for area estimates remains difficult
Approximately 700 plots in the watershed through 2005.
National Resources Inventory

A statistical survey of land use and natural resource conditions and trends on U.S. non-Federal lands.

NRI Results

- 2003 Annual NRI - Land Use
 (National, Major River Basin, and State level estimates)
- 2003 Annual NRI - Soil Erosion
 (National, Major River Basin, and State level estimates)
- 2003 Annual NRI - Wetlands
 (Farm Production Region estimates)
- Archived Annual NRI
- 1997 Five-Year NRI
- Map Room
- Publications
- Data Availability

More About the NRI Process

- Statistical Design
- Data Gathering
 -- Remote Sensing Laboratories
- Statistical Estimation
- Glossaries

NRI Applications

- Conservation Effects Assessment (CEAP) with the NRI
Erosion on Cropland by Year
(Billions of Tons)

1982
- Sheet & Rill Erosion: 1.67
- Wind Erosion: 0.39
- Total: 3.06

1987
- Sheet & Rill Erosion: 1.47
- Wind Erosion: 0.83
- Total: 2.77

1992
- Sheet & Rill Erosion: 1.17
- Wind Erosion: 0.98
- Total: 2.15

1997
- Sheet & Rill Erosion: 1.04
- Wind Erosion: 0.84
- Total: 1.88

2001
- Sheet & Rill Erosion: 0.99
- Wind Erosion: 0.78
- Total: 1.77

2003
- Sheet & Rill Erosion: 0.97
- Wind Erosion: 0.78
- Total: 1.75

Cropland includes cultivated and non-cultivated cropland.

Source: National Resources Inventory
3 Conclusions
How does FIA data inform the carbon discussion?

• Area and area change
• Field campaign
• New measures
 – Soils
 – Forest floor
 – Down wood

• Harvested wood & products (utilization, TPO, fuelwood, imports/exports) …
FIA’s weaknesses are well-known,

- Coarse scale
 - Grid can be intensified to address specific forest health problems
- Landscape-scale status and trend
 - Small-scale variability not captured
- Not everything measured
 - Only upper 20 cm mineral soil
- Difficult to evaluate management
...but its strengths are considerable.

- Unbiased sampling across ALL ownerships
- Nationally consistent protocols
- Rolling annual inventory — status and trend
- Detection monitoring
- Integrated forest health indicators
- Data published on regular intervals
Contact Information

Charles H (Hobie) Perry
Northern Research Station
St. Paul, MN

charleshperry@fs.fed.us
651.649.5191
http://fiatools.fs.fed.us/
Example of land management—C budget for planted SE pine

- Site quality assumed to be high.