CO₂ Flux Dynamics in the Gulf of Mexico

Rik Wanninkhof

Miami, FL USA

Outline

Overall motivation

 \succ Calculation of air-sea CO₂ flux

Previous work

> Approach to create flux maps

Remote sensing and modeling products

➤ Means of extrapolation/interpolation Determining ΔpCO₂ fields Determining gas transfer velocities

Recommendations

North American Carbon Program Science Implementation Plan

- 1. "The ocean component will define the net effect of the marine system on the CO_2 concentration of the air exchanging with continental air masses."
- 2. "Critical for the NACP goals are the Tier 2 observations that, together with local time-series and satellite remote sensing, will be used to generate regional to basin scale CO_2 flux maps."
- 3. "Some studies have suggested that the "continental shelf pump" could be responsible for as much a 1 Pg C sink annually on a global basis. A coordinated large-scale coastal carbon exchange program is necessary to address the goals of the NACP. "

by the North American Carbon Program Implementation Strategy Group

> A. Scott Denning Chair and editor

Gulf of Mexico- Objectives

Determine air-sea CO₂ fluxes in the GOM (Global coastal flux estimates range from -1 to +0.2 Pg C/yr)

Elucidate the processes that control the pCO₂ levels (Determine the large scale effects of continental/riverine input)

Lohrenz

Motivation

Determination of Air-Sea CO₂ Fluxes in the Gulf of Mexico

Measurement

The net effect of the marine system on the CO₂ concentration of the air exchanging with continental air masses

 XCO_2 higher than KEY station Subtle differences in XCO_2 with wind direction, if any Need a dedicated effort/augmentation for air measurements

387

http://www.esrl.noaa.gov/gmd/

Estimates of Air-Sea CO₂ Fluxes in the Gulf of Mexico

Very little CO₂ data

"Although observations are limited, it appears that these waters are a CO_2 source and the coastal waters have similar pCO₂ and SST as the offshore waters." (*Chavez, Takahashi, et al., 2007 SOCCR report*)

Previous work

Regional Patterns of Seasonal Fluxes in the Caribbean 2004 Explorer of the Seas

Based on algorithms on SST and data, at Southern edge of GOM, the region is a CO_2 sink

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Riverine effects on pCO₂

High nutrient input causes pCO₂ drawdown

Cia and Lohrenz pers. com.

Previous Work

Gas Transfer Velocity Estimates

Gas transfer estimates is on the high side of the gas exchange-wind speed envelope

Previous Work

Creation of Flux Maps in the Gulf of Mexico

- * Obtain data from ships and other platforms (moorings, small boats)
- * Create regional algorithms with biogeochemical and physical parameters that are measured at higher frequency and with regional coverage
- * Use high data coverage to create flux maps that captures spatial and temporal variability

(High frequency) products available:
Q-Scat Wind: for gas transfer
Reynolds SST: for pCO_{2w} (tied to ship SST)
Location: different biogeochemical provinces (SOM)
Chlorophyll: productivity
Mixed layer depth: entrainment
Salinity: delineation of provinces
Sea surface height: entrainment

Determination of pCO₂ fields

1. pCO₂ data - GOMECC cruise- July 2007

Langdon and Salisbury

Anti-correlation pCO₂ and O₂ supersaturation near the coast

Determination of pCO₂ fields

2. Underway data NOAA fisheries ship Gordon Gunter

pCO₂ mooring Sabine&Lohenz

6-week cruise track Sept-Oct 2007

R/V Gordon Gunter cruise track showing color coded xCO2 data. This display is updated every morning.

Remotely Sensed Data / Assimilation models

NOAA Coastwatch Caribbean/Gulf of Mexico Regional Node: http://cwcaribbean.aoml.noaa.gov/data.html

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Remotely Sensed Data / Assimilation models

Color:

TIFF (LZW) d

JD 190-194, 2007

JD 200-204, 2007

JD 215-219, 2007

% clean pixels MODIS GOM

Data products

Wind:

QuickScat - 25 km resolution 2 passes/day

Data products

*SST-*Issues: skin temperature, near surface gradients, haze Causing a cold bias

Data products

Data Assimilation models

IASNFS

Experimental Real-Time Intra-Americas Sea Ocean Nowcast/Forecast System

http://www7320.nrlssc.navy.mil/IASNFS_WWW/IASNFS_intro.html

A potential powerful tool for regional interpolation/extrapolation

70

GOMECC July 2007

0.36251

30.5

24

25

31

31.5

For > 80 % of GOM pCO₂ is strongly correlated with SST

26

Similar relationship as for Caribbean Sea 2003-2005: $\Delta fCO_2 = 11.63 \text{ SST} + 0.77 \text{ Lat} - 0.42 \text{ Long} - 361$ $\Delta fCO_2 = 11.63 \text{ SST} - 301$

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture

Now for the remaining 20 % ????

Interpolation

"Near-shore": GOMECC Correlations with salinity and color

See: Joe Salisbury, UNH Steve Lohrenz, USM

Interpolation

Gas Transfer Velocities

GOM- Fetch, low winds, chemical enhancement, surfactants?

Woolf, Tellus 2005

Gas Transfer Velocities

An inclusive parameterization of gas exchange with wind *Wanninkhof, Asher, Sweeney, Ho, McGillis, Annual reviews, submitted*

	$\mathbf{k} = \mathbf{a} + \mathbf{b} \mathbf{U} + \mathbf{C} \mathbf{U}^2 + \mathbf{d} \mathbf{U}^3$
Constant:	Chem enhancement, non-wind induced turbulence
Linear:	Transfer across solid boundary
Quadratic:	Wind stress
Cubic:	Dissipation, bubbles

Recommendations

To constrain air-sea fluxes in GOM and its effect on North America:

- Provide support for surface water pCO₂ observing system (ship and mooring)
- Develop robust algorithms in regions affected by riverine input (Use color!)
- Perform process study for direct measurement CO₂ fluxes (year-long study on platform)
- Establish robust air sampling program

