River loop and natural ocean outgassing CBW Laure Resplandy

Princeton University

Partition between land and ocean key to assess impacts and carbon-climate feedbacks

Natural carbon flows introduce large uncertainties in ocean/land partition and global carbon budget

Constraint on natural ocean/river carbon flux: north/south asymmetry & river loop contribution

Hemispheric asymmetry quantifies north/south imbalance in ocean/river fluxes

Hemispheric asymmetry $A = (T_{20N} + T_{20S}) / 2$

Carbon north-south transport scales with heat transport

Heat asymmetry explains **60%** of differences in carbon transport Heat + Bio pump asymmetry explain **85%** of carbon transport

Heat constraint on carbon transport

- Estimates agree within large uncertainties but systematic differences in north-south balance
- ocean inversions incompatible with heat constraint
- stronger river loop improve match to heat constraint
- Implies strong outgassing of CO₂ offsets uptake in the South

Resplandy et al., Nat Geo 2018

SOCCOM float data suggests stronger winter outgassing in Southern Ocean

Bushinsky et al, 2019

Constraints on river loop including recent research on estuaries, coastal vegetation and shelves

Multiple line of evidence support large natural carbon flow to the ocean leading to a natural outgassing of 0.7 PgC/y çarbon Gaps

- Top down heat constraint
- Stronger winter outgassing in the Southern Ocean
- Revised bottom up estimates of estuaries including carbon fixation by coastal vegetation

Influence partition between land/ocean sink and understanding of carbon feedbacks