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Mechanisms affecting air-sea CO; fluxes

Fir—sea = Ko ([COssw(SST, SSS, DIC, Alk) — [COs)sut(SST, SSS, pCOy))
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#  Key conceptual distinction:

* “Anthropogenic CO;” is
the CO» that is taken up
by the ocean in response
to rising atmospheric
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| I* “Natural CO;" is the CO>

—————————— ” that exchanges between |

) | the atmosphere and ocean |
due to other (perhaps \
natural) processes. \

Lateral \
boundary \
fluxes i

_— e e - e e . e . e s e — -

s
= — — — — — — — — — — — — — —
0




Evidence from ocean interior observations
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ounddry 1 ‘ 'Ocean interior observations can help in two ways:
fluxes ' ’

* Qcean tracer observations can be used to derive
state estimates for processes such as circulation and |
biology, and these can be incorporated into models |
of air-sea CO; exchange.

* Repeat hydrographic measurements of DIC and
other tracers can be used to derive estimates of the |
change in anthropogenic DIC in the ocean. ;
Integrated globally, the change in anthropogenic DIC |
inventory is equal to the global air-sea CO; flux.
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Methods

Ocean Circulation Inverse Model (DeVries)
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: eMLR technique for Cant (Gruber et al., 2019)
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e 3-d circulation model “fit” to tracer observations to
determine climatological transport (OCIM)

e OCIM used offline to simulate anthropogenic CO:
uptake by the ocean (DeVries, 2014)

e OCIM can be fit to decadal-average data to get
(maybe?) decadal average ocean transport and air-sea
CO2 fluxes (DeVries et al., 2017)

 DIC data are split into different time periods

 DIC data are corrected for biological effects (C*)

e C* data are mapped to reference year

* MLRs are used to fill in gaps in reference year datasets

see also Sabine et al. (2004)



Example Results

eMLR reconstruction of Canc column inventory change
from 1994-2007

OCIM Cine column inventory'in 1994

Concentration of Cine (umol/kg) in 1994 from a few
different reconstruction methods: AC* (Sabine et al., 2004),
TTD (Waugh et al, 2006), OCIM (DeVries et al., 2014)



Method Comparison

Ocean CO2 Uptake
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Air-sea CO2 flux (PgC yr 1)
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We need to:
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2015

Air-sea CO:; flux products (total CO; flux)

SOMFFN (Landschutzer et al, 2016)
CSIRML6 (Gregor et al., 2019)
SOCOM compilation (Rodenbeck et al, 2015)

“Interior observation-based”
products (anthropogenic CO; only)

OCIM pCO:; forcing only (update of DeVries, 2014)
OCIM pCO2+SST forcing (update of DeVries, 2014)

—l— eMLR C;n reconstruction (Gruber et al,, 2019)

(1) Reconcile the differences in the mean ocean CO; sink between the various methods

. Non
2. Mec
(2) Reconci

-air-sea boundary fluxes

nanisms captured by each method (e.g.“Natural” vs.“anthropogenic” CO»)

e the differences in the variability

|. Mec

nanisms of variability

2. How much of the variability is real vs. an artifact of the method!?





