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Abstract The rate of calciWcation in the scleractinian
coral Galaxea fascicularis was followed during the day-
time using 45Ca tracer. The coral began the day with a low
calciWcation rate, which increased over time to a maximum
in the afternoon. Since the experiments were carried out
under a Wxed light intensity, these results suggest that an
intrinsic rhythm exists in the coral such that the calciWca-
tion rate is regulated during the daytime. When corals were
incubated for an extended period in the dark, the calciWca-
tion rate was constant for the Wrst 4 h of incubation and
then declined, until after one day of dark incubation, calci-
Wcation ceased, possibly as a result of the depletion of
coral energy reserves. The addition of glucose and Artemia
reduced the dark calciWcation rate for the short duration of
the experiment, indicating an expenditure of oxygen in res-
piration. ArtiWcial hypoxia reduced the rate of dark calciW-
cation to about 25% compared to aerated coral samples. It
is suggested that G. fascicularis obtains its oxygen needs
from the surrounding seawater during the nighttime,
whereas during the day time the coral exports oxygen to
the seawater.

Keywords Corals · Galaxea fascicularis · CalciWcation 
rhythm · Dark calciWcation

Introduction

There have been extensive studies during the last two
decades on coral calciWcation and its interactions at many
levels. CalciWcation is important for reef building and plays
a role in seawater carbonate chemistry, which is inXuenced
by the atmospheric CO2 levels (Barnes and Chalker 1990;
Frankignoulle et al. 1994; Gattuso et al. 1998; Kleypas et al.
1999; Gattuso and Buddemeier 2000; Langdon et al. 2000;
Marubini et al. 2001, 2002; Leclercq et al. 2002; Reynaud
et al. 2003; Langdon and Atkinson 2005). Most of the infor-
mation gained on coral calciWcation has focused on light
calciWcation while little attention has been given to dark cal-
ciWcation. CalciWcation requires energy and involves vari-
ous enzymes and carriers (Barnes and Taylor 1973; Chalker
and Taylor 1975; Ip et al. 1991; Goiran et al. 1996; Al-
Moghrabi et al. 1996; Allemand et al. 1998; Furla et al.
1998; Al-Horani et al. 2003a). It is accepted that corals cal-
cify at a faster rate in the light compared with the dark,
through a phenomenon usually termed light-enhanced calci-
Wcation. In the light, photosynthetically produced reduced
carbon compounds are transported to the growing parts of
the coral to be used as energy resources and building blocks,
while O2 produced during photosynthesis supports meta-
bolic respiration (Patton et al. 1977; Rinkevich and Loya
1983; Falkowski et al. 1984; Fang et al. 1989; Al-Horani
et al. 2003b). Carbon dioxide Wxation by photosynthesis
removes this respiratory product and controls the pH in the
coral tissues (Furla et al. 1998; Al-Horani et al. 2003a). This
led to the belief that photosynthesis was the driving force
behind the higher rate of calciWcation in the coral during the
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daytime (Goreau 1959; Pearse and Muscatine 1971; Chalker
and Taylor 1975). In the dark, photosynthesis ceases com-
pletely and the coral depends on a self-service mode of
action to sustain growth and calciWcation (Muscatine 1990).
To date, calciWcation in the dark has received little attention
in coral research. Previous studies of dark calciWcation did
not go beyond an estimation of the ratio between light and
dark calciWcation rates (reviewed by Gattuso et al. 1999).
As a result, there is currently a need for further information
about the process of dark calciWcation in corals.

Various methods have been employed to study calciWca-
tion, with the use of radioisotopes being one of the main
techniques for work involving both corals and other marine-
calcifying organisms. However, measuring 45Ca exchange
with 40Ca produces errors because this exchange gives appar-
ent calciWcation in the absence of real precipitation (Goreau
1959). The processing of samples also produces additional
errors. In some cases, dark calciWcation has been confused
with isotopic exchange (Chalker and Taylor 1975). In other
cases, coral researchers have assumed that isotopic exchange
is small compared to true calciWcation occurring in the light
and have used dark calciWcation as a control for experiments
involving light calciWcation (reviewed by Barnes and Chal-
ker 1990). Using cultured microcolonies with no skeletons
exposed to the radioisotope-labeled incubation medium,
Tambutté et al. (1995, 1996) reduced the errors associated
with isotopic exchange. Further improvements were made by
including dead colonies in the incubation experiments to esti-
mate the rate of isotopic exchange (Al-Horani et al. 2005).
These results showed that dark calciWcation does occur in
corals and that rates were always higher compared with those
obtained using isotopic exchange methods. But the question
of what drives calciWcation in the dark remains. The use of
Ca2+ microsensors has proved to be a valuable tool for study-
ing the dynamics and Xuxes of Ca2+ at a microscale level in
corals (De Beer et al. 2000; Al-Horani et al. 2003a). The
application of Ca2+ and pH microsensors in diVerent com-
partments of the coral, including the calcifying Xuid between
the skeleton and the tissue layer, has provided many details
about the mechanism of light calciWcation (Al-Horani et al.
2003a).

The present study was carried out to develop our under-
standing of dark calciWcation in the coral Galaxea fascicu-
laris, daytime calciWcation, and the driving forces of dark
calciWcation in this species.

Materials and methods

Biological samples

Single polyps of G. fascicularis from colonies from the Gulf
of Aqaba (Jordan), were suspended in seawater in the aquaria

of the Centre ScientiWque de Monaco using nylon threads
as described by Al-Moghrabi et al. (1993). After about
3 months, the polyps developed into small microcolonies,
which were used in the experiments described in this study.
The aquarium was supplied with Mediterranean seawater with
low nutrient and chlorophyll a concentrations (Ferrier-Pagès
et al. 1998) and illuminated with metal halide lamps (HQI,
400 W) at a constant irradiance of 200-�mol photons m¡2 s¡1

(12 h:12 h light:dark cycles). Water temperature in the aquar-
ium was 27°C while the seawater pH was between 8.1 and
8.2. The seawater had an aragonite saturation state of 3.1–3.7.

EZux experiments

In order to test the eZux of 45Ca from the coral coelenteron,
three microcolonies were incubated in small plastic vials with
25 ml of seawater at 27°C for one hour. The speciWc activity
of the water at the beginning was ca. 23,000 dpm. A 100-�l
volume of the labeled seawater was used to count the activity
(mixed with 4 ml scintillation Xuid). Counting was carried out
for 5 min in a scintillation counter. After the end of the incu-
bation period, the microcolonies were dipped in nonlabeled
seawater ten times to remove nonspeciWc bound 45Ca. The
microcolonies were then transferred to 100 ml nonlabeled
seawater and incubated under the same conditions used in the
experiment to determine the eZux rate. A 100-�l water sam-
ple was taken for counting at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,
16, 18, 20, 25, 30, 40, 50, 60, 70, 80, 100 and 120 min.

Processing of coral skeleton

At the end of the incubation period, the microcolonies were
then blotted dry on tissue paper and boiled with ca. 10 ml
2 N NaOH solution for 30 min to hydrolyze the tissue
layer. After the tissue hydrolysis was complete, the hydro-
lysate was decanted and the skeleton was washed with
10 ml distilled H2O. The skeleton was then blotted dry on
tissue paper and dried overnight at 70°C in oven. The next
day, the dried skeletons were weighed and hydrolyzed com-
pletely by concentrated HCl solution and 250 �l of the
hydrolysate was mixed with 4-ml scintillation Xuid and
counted for 5 min in the scintillation counter.

Daytime calciWcation rates

In order to measure changes in the rate of coral calciWcation
during the day, the calciWcation rate was measured at 09:00,
12:00, 15:00, 18:00 and 20:00 h.

Dark incubations and measurement of calciWcation rates

CalciWcation in the dark was measured in triplicate for the
coral microcolonies after incubating in the dark for 1, 2, 4,
123
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12, 24, 48 and 72 h. After dark incubation, the corals were
incubated with 45Ca at 27°C in stirred seawater for 1 h
each. The Wrst four measurements were made during the
night so that the normal light dark cycle of the coral was not
disturbed.

EVects of addition of external energy sources

Replicates of G. fascicularis were pre-incubated for 3 h in
the dark. One mM of glucose was added to one group;
2 mM of glucose was added to a second group while
Artemia salina naupilii were added to a third group. A
fourth control group was similarly incubated but without
any additions. After this period, the colonies of each group
were transferred to three incubating jars and 45Ca was added
and left one more hour in the dark.

EVect of oxygenated and de-oxygenated seawater 
on coral calciWcation

Seawater was passed through a 0.2-�m Wlter and oxygen-
ated with an air pump or de-oxygenated with N2 gas for
30 min. During incubation, the microcolonies were incu-
bated in sealed Erlenmeyer Xasks in 50 ml of solution. The
air and N2 gas were continuously bubbled through syringe
needles and after ca. 15 min of incubation at 27°C, 45Ca
was injected using a Hamilton syringe. Triplicates of
microcolonies were incubated in the following conditions;
O2 bubbling in light: N2 bubbling in light: O2 bubbling
in dark: N2 bubbling in dark. These experiments were
designed to test the presence of stored energy sources in the
corals and the eVect of ambient O2 level on the rate of coral
calciWcation.

Oxygen depletion and repletion in seawater

Four conditions were tested to determine rates of oxygen
depletion and repletion from seawater. The Wrst involved
aeration, whilst the oxygen depletion rate from the water
was measured in the absence of a coral microcolony. The
second was similar to the Wrst but with a microcolony
suspended in the beaker containing the seawater. The
third involved Xushing for 15 min with N2 gas and mea-
suring the oxygen repletion rate into the seawater. The
fourth was similar to the third but with a coral microcol-
ony suspended in the seawater. Oxygen levels were
measured in a respirometric glass chamber containing a
Strathkelvin 928 electrode and Mediterranean seawater
while the liquid was continuously stirred with a stirring
bar.

All results were statistically analyzed using a one-way
ANOVA.

Results

EZux experiments showed that radioactive tracers were
washed out after about 10 min of stirring in clean seawater;
as a result, this time was used in treatment of samples after
incubation in radioactive tracers.

The calciWcation rate measured in the light was about
twice that in the dark (4.07 § 0.15 �mol Ca2+/g wt/h
(mean § SD) compared to 1.98 § 0.31 �mol Ca2+/gwt/h).
In both treatments there was a signiWcantly higher
(P < 0.05) incorporation rate compared with the dead coral
colonies (0.10 § 0.1 �mol Ca2+/gwt/h) (Fig. 1). The rates
of calciWcation during the daytime under constant light
intensity showed a clear temporal pattern (Fig. 2). In the
morning (at 9:00 h), the rate of calciWcation was
2.84 § 0.19 �mol Ca2+/gwt/h, at noon the rate increased to
3.24 § 0.46 �mol Ca2+/gwt/h reaching its maximum at
15:00 h with a rate of 4.26 § 0.60 �mol Ca2+/gwt/h, and
then decreasing to 3.58 § 0.82 �mol Ca2+/gwt/h by 18:00 h
and Wnally decreasing to 1.84 § 0.74 �mol Ca2+/gwt/h by

Fig. 1 CalciWcation rates in the light, the dark and for dead colonies of
Galaxea fascicularis
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Fig. 2 CalciWcation rates of Galaxea fascicularis colonies over the
course of a day under a constant irradiance of 200-�mol photons m¡2 s¡1
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20:00 h. This pattern was similar to that observed for dark
calciWcation rates. There were signiWcant diVerences between
the calciWcation rates at 9:00 and 15:00, 12:00 and 20:00,
15:00 and 20:00, and 18:00 and 20:00 (P < 0.05).

In order to further characterize dark calciWcation in cor-
als, the coral colonies were incubated in the dark for up to
72 h as detailed in the methods section. The rate of dark
calciWcation remained constant for a few hours after incu-
bation in the dark (at about 2 �mol Ca2+/gwt/h) after which
a drop occurred (i.e., after 12 h of incubation). After 24 h,
there was a signiWcant reduction in the rate of dark calciW-
cation (to about 0.17 �mol Ca2+/gwt/h) (Fig. 3), which was
about the same order as for the dead colonies. There were
signiWcant diVerences between all incubations of 12 h or
less (i.e., 1, 2, 4 and 12 h) and all incubations more than
12 h (i.e., 24, 48 and 72 h) (P < 0.05).

For dark calciWcation, the addition of glucose or Artemia
had a negative eVect on the rate of coral calciWcation
in both cases. The control rate of dark calciWcation was
1.98 § 0.31 �mol Ca2+/gwt/h (mean § SD), while the rate
decreased to 1.24 § 0.26 �mol Ca2+/gwt/h after 1 mM glu-
cose was added, and 1.03 § 0.16 �mol Ca2+/gwt/h for
2 mM glucose. Addition of Artemia also decreased the rate
to 1.02 § 0.41 �mol Ca2+/gwt/h (Fig. 4). There was a sig-
niWcant diVerence between the control rate and all the other
treatments (P < 0.05), but not among treatments.

In order to study the eVects of the ambient oxygen level
on the rate of coral calciWcation, the coral colonies were
suspended in oxygenated and de-oxygenated seawater and
the rates of light and dark calciWcation were measured
under the two conditions. There was no signiWcant diVer-
ence between the rates of light calciWcation in oxygenated
(3.73 § 0.15 �mol Ca2+/gwt/h, (mean § SD)) and de-oxy-
genated (3.14 § 1.25 �mol Ca2+/gwt/h) seawater, but a sig-
niWcant diVerence for dark calciWcation, where the rate in
oxygenated seawater was more than three times higher than
in de-oxygenated seawater (1.48 § 0.16, 0.40 § 0.6 �mol

Ca2+/gwt/h, respectively) (Fig. 5). There were signiWcant
diVerences between the rates of calciWcation in corals incu-
bated in light and dark with N2 bubbling (P < 0.05), and
between the rates in light and dark incubations with O2 bub-
bling (P < 0.05). SigniWcant diVerences were also found
between calciWcation rates in corals incubated in the dark
with N2 bubbling and corals incubated in the light with
O2 bubbling (P < 0.05), and between calciWcation rates in
corals incubated in the light with N2 bubbling and corals
incubated in the dark with O2 bubbling (P < 0.05). In the
oxygen-depleted seawater, the oxygen level increased to
saturation levels at a faster rate in the presence of a coral
colony when compared with the same condition in the
absence of a coral colony (Figs. 6, 7). In other cases where
oxygen was bubbled before the start of measurements, the
oxygen level increased steadily in the presence of a coral
colony (i.e., over-saturation was observed), while the oxy-
gen level decreased to reach a saturation level and was
maintained at a steady state in the absence of the coral col-
ony (Figs. 6, 7).

Fig. 3 Dark calciWcation in Galaxea fascicularis colonies incubated
for up to 72 h
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Fig. 4 Rates of dark calciWcation in Galaxea fascicularis upon addi-
tion of 1 mM (D + 1 mM Glu) and 2 mM of glucose (D + 2 mM Glu),
and Artemia (D + Art. fed)
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Fig. 5 EVects of oxygenation (O2) and de-oxygenation (N2) on the rates
of light (L) and dark (D) calciWcation in Galaxea fascicularis colonies
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Discussion

The present study had two objectives. The Wrst was to test
whether corals have a Wxed rate of calciWcation when held
under a uniform light intensity, and the second to investi-
gate the driving force behind coral calciWcation in the
absence of photosynthesis (i.e., dark calciWcation).

The ratio between light and dark calciWcation in G. fascic-
ularis was two to one. This diVerence could not be attributed
to isotopic exchange as this has previously been shown,
by including dead corals in the incubation experiments
(Al-Horani et al. 2005), to be much lower than the rates
obtained for light and dark calciWcation (Fig. 1). This value
also lies within the ratios obtained for corals in general
(reviewed by Gattuso et al. 1999). The rate diVerence
between light and dark calciWcation has always been attrib-
uted to photosynthesis enhancement of calciWcation during
the light (e.g., Goreau 1959; Pearse and Muscatine 1971). In
the dark, the calciWcation rate is reduced to about one half of
its rate in the light, but calciWcation still takes place, although
at lower rate.

Pätzold (1984) found that the growth of corals followed
seasonal rhythms between summer and winter as a result of
sea temperature variations. Aside from his work, few stud-
ies have been conducted to investigate daily changes in the
rate of coral calciWcation. Most have been conducted under
natural daylight (Clausen and Roth 1975; Chalker 1977;
Barnes and Crossland 1978; Hidaka 1991). Moya et al.
(2006) alone investigated coral calciWcation rates during
a diel cycle using Stylophora pistillata under controlled
conditions. They found no evidence of a daily cycle in the
calciWcation rate under constant irradiance. In the present
study, calciWcation rates for G. fascicularis were followed
during the time course of a day. In the morning, the coral
started with a relatively low rate of calciWcation, which
increased to a maximum at 15:00 h. Thereafter the rate
decreased until 20:00 h when it mirrored the dark rate of
calciWcation (Fig. 2). These rate changes were not related to
changes in light intensity since all experiments were con-
ducted under a Wxed light intensity in a darkened fume
hood space, thus suggesting that G. fascicularis has an
intrinsic rhythm for the regulation of calciWcation rate dur-
ing the day. Field studies of O2 Xux and photosynthesis
have demonstrated a similar rhythm in three other coral
species, Goniopora lobata, Favia favus and Plerogyra
sinuosa (Levy et al. 2004). Another study found a daily
photosynthetic rhythm with a maximum value at sunrise
and sunset and a minimum value occurring at noon for
Acropora cervicornis (Chalker and Taylor 1978). The
mechanism behind this rhythm is not known.

CalciWcation in the dark remained nearly constant for the
Wrst 4 h of incubation, then reduced by about 25% (i.e.,
after incubation in the dark for 12 h), and Wnally dropped to
about 10% of the original rate, close to the value recorded
for the dead colonies attributable to isotopic exchange
(Fig. 3). This suggests that the coral had a reservoir of
energy that was used to support calciWcation for the Wrst
few hours in the dark, with the calciWcation rate then
declining after this energy reservoir was exhausted. Under
normal conditions, corals are able to restore their energy
reserves during the next daylight period through photosyn-
thesis, but because in this experiment they were kept
in dark after the 12-h incubation, the calciWcation rate
decreased to zero. The addition of energy resources such as
glucose and Artemia salina naupilii did not increase dark
calciWcation over the short duration of the experiment,
rather, a decrease was observed (Fig. 4). The addition of
1 mM glucose decreased the rate of dark calciWcation by ca.
37% relative to the dark control. This reduction could be
due to diversion of energy into glucose consumption and
cleavage. Also in support of this assumption was the Wnd-
ing that the rate further decreased to about 50% of the con-
trol when the concentration of glucose was increased to
2 mM. Additionally, adding Artemia also decreased the rate

Fig. 6 Change in oxygen level in seawater with coral colony after
oxygen depletion (grey line) and oxygen bubbling (black line)
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Fig. 7 Change in oxygen level in seawater without coral colony after
oxygen depletion (grey line) and oxygen bubbling (black line)
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by about 50%. Edmunds and Davies (1988) found that the
respiration rate in cnidarians and other animals increased
after feeding on particulate food, which they attributed to
energy expenditure in growth. These results can be inter-
preted as a reduction in the calciWcation rate and a realloca-
tion of energy into respiration and uptake of Artemia at
least for the short period after addition of glucose and
Artemia. This link between respiration and calciWcation in
corals has previously been demonstrated through the inhibition
of calciWcation by inhibiting oxidative phosphorylation
(Chalker and Taylor 1975). Furthermore, in experiments
which were conducted for longer time periods (weeks or
months), feeding the coral S. pistillata with Artemia and
freshly collected zooplankton resulted in enhanced coral
growth both in the light and the dark (Houlbreque et al.
2003; Ferrier-Pages et al. 2003). The Wnding that reductions
in dark calciWcation rates with depth was not proportional
to the reduction in photosynthesis and light energy (Drew
1973), also supports the idea that feeding on particulate
matter has a role in dark calciWcation.

In order to elucidate the role of ambient oxygen in coral
calciWcation, G. fascicularis colonies were incubated in the
light and dark in aerated and oxygen-depleted seawater. In
the light, there were no signiWcant diVerence in calciWcation
rate between N2 bubbling and aerated treatments, while in
the dark the rate was about 75% less in the case of N2 treat-
ment compared with the aerated samples (Fig. 5). Although
aeration increased dark calciWcation, this enhancement was
not to the same degree as seen in the light. This suggests
that O2 is only one factor amongst several that are responsi-
ble for the higher rate of calciWcation in the light. Other fac-
tors may include the supply of reduced organic carbon
compounds, the removal of byproducts, and the control of
pH at the calciWcation site. CalciWcation rates for S. pistil-
lata in aerated dark experiments were also found to be
signiWcantly higher than calciWcation rates of non-aerated
dark controls (Rinkevich and Loya 1984). Similarly, it was
found that in unstirred conditions, the rates of light and
dark calciWcation were reduced by 25 and 60%, respec-
tively (Dennison and Barnes 1988) suggesting that photo-
synthesis can possibly compensate the coral with oxygen in
cases where the oxygen level is reduced, while in the dark
the ambient oxygen is crucial for the coral to calcify. Corals
may experience low ambient oxygen levels (i.e., hypoxia)
during calm sea conditions when water movement around
the coral colony is minimal (Ulstrup et al. 2005). This
could lead to an increased boundary layer eVect with low
gas exchange and thereby increased oxidative stress, which
in turn may lead to coral death at elevated water tempera-
tures (Lesser et al. 1994; Nakamura and Woesik 2001;
Ulstrup et al. 2005). In the present study, when changes in
ambient oxygen level change were followed over time in
oxygenated and de-oxygenated seawater with and without a

coral present, the oxygen-depleted seawater was able to
replace oxygen and reach a steady state in both cases,
although the process was faster when a colony was present.
This implies that seawater can exchange gases with the
atmosphere, a factor, which might be important when sea-
water oxygen levels are low. The aerated seawater reached
a steady state in the absence of coral colony, while it
became supersaturated when a colony was present, a result
which indicates that corals play an important role in supply-
ing oxygen to the surrounding seawater. In previous experi-
ments, it has been shown that the O2 concentration
measured at the coral surface was higher than in the ambi-
ent seawater (Kuehl et al. 1995; De Beer et al. 2000; Mar-
shall and Clode 2003). This additional O2 diVuses into the
surrounding seawater and could support the respiratory
needs of other reef organisms as well as being a reservoir of
O2 for night respiration by corals themselves (Al-Horani
et al. 2003b).

From the results of this study it is concluded that in
G. fascicularis the daily rate of calciWcation is regulated by
an intrinsic rhythm whose mechanism is yet unknown. In
contrast, the dark calciWcation rate is mainly controlled by
the level of energy reserves in the coral and the oxygen level
in the surrounding seawater.
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