

Biogeochemical Applications for Intense Oceanic O₂ Minimum Zones

- Small portion of oceanic volume, but have a central role for key biogeochemical cycles; e.g. N cycles
- Important influence on ocean release of trace gases; e.g. N₂O, CH₄
- Overlay high accumulation rate, organic C-rich sediments which hold important paleo-climate archives
- Impact the population and ecology of regionally important living marine resource species
- Concern over future expansion of both natural and anthropogenic low O₂ zones. Occur in climate sensitive regions; e.g. ETP (ENSO), Arabian Sea (Monsoon)

High surface productivity and downward OM flux
Poor subsurface water mass ventilation
-closed regional circulation (shadow zone)
-remote surface (outcrop) ventilation zone

· ·

Lothar Stramma, e Science **320**, 655 DOI: 10.1126/sciel

A1: Monitoring future changes in extent and intensity.

Distinguish natural vs. anthropogenic climate forcing

Past large changes in suboxic zone intensity off Peru. Centennial version of ENSO?

A2: Resolve current questions regarding N cycling microbial pathways and stoichiometry

A.H. Devol et al. / Deep-Sea Research 1 53 (2006) 1533-1547

Fig. 10. Comparison of N₂-excess derived from N₂:Ar ratios (solid symbols) with the nitrate deficit derived from N:P stoichiometry by Codispoti et al., 2001 (open symbols).

Fig. 3: Schematic of major and possible suboxic zone N cycle pathways and associated ^{15}N fractionation factors (see text). NO and N₂O intermediates are not shown. POM originates from surface productivity and produces NH_4^+ with little isotopic fractionation. Ultimate sources for excess biogenic N₂ must be from either sediment fluxes or POM remineralization in the water column.

Canonical Denitrification

 $\begin{aligned} (\mathrm{CH}_2\mathrm{O})_{106}(\mathrm{NH}_3)_{16}\mathrm{H}_3\mathrm{PO}_4 + 94.4\,\mathrm{HNO}_3 \\ = 106\,\mathrm{CO}_2 + 55.2\,\mathrm{N}_2 + 177.2\,\mathrm{H}_2\mathrm{O} + \mathrm{H}_3\mathrm{PO}_4 \end{aligned}$

Anammox

 $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$

Property Relationships along σ_θ 26.3 to 26.5 in S. Pacific

Needs and Feasibility

1. A1; stable, accurate O₂, ready now, existing deployments (examples at end) 2. A2; novel combination of measurements using existing sensors a. $[NO_3] \pm 1 \mu mol/kg$ (ISUS) b. $[NO_2] \pm 1 \mu mol/kg$ c. $[N_2] \pm 1 \mu mol/kg$ (~ GTD Pt - P₀₂) d. $[DIC]_{org} \pm 2 \mu mol/kg (pH \& pCO_2)$

20 day glider deployment during Meteor 77 leg 4 in Jan. 2009

20 day glider deployment during Meteor 77 leg 4 in Jan. 2009

