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Issues

NPP (4.8 Gt C a! Arrigo, unpubl.); export (>0.2
<0.4 Gt C a!, Lutz et al., 2007) play pivotal roles
in supporting ecosystems and C sequestration

NPP and export are sub-maximal in much of the
S. Ocean — HNLC waters

Climate variability — impact of SAM — stronger
and poleward shift in winds

Climate change vs. variability- stronger winds
(Ekman transport) versus enhanced
stratification (slower upwelling)

Data-poor - reliance on satellite data and models

Aspiration to develop a better mechanistic
understanding of phytoplankton processes



The variegated Southern Ocean

The air-sea balance of CO, is controlled mainly by the biological
pump & circulation in the Antarctic deep-water formation region,
whereas global export production is controlled mainly by the
biological pump and circulation in the Subantarctic intermediate
and mode water formation region. (Marinov et al. 2006)



Remote-sensing / algorithms provides basin wide estimates of NPP
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NPP Anomaly
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NPP anomalies
were compared with
those for biological
& environmental
drivers

Arrigo et al. (2008)
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Arrigo et al. (2008)
Concluded

Interannual variability in NPP
was 17%

Of this, 31% of the variation in
NPP was explained by SAM

Interannual variability in NPP

was most closely tied to changes
in sea ice cover, although changes
in SST also played a role.

Annual NPP could increase in
the future as stronger winds
increase nutrient upwelling.
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Other studies provided
alternative explanations

The Southern Ocean Biological
Response to Aeolian Iron Deposition

Nicolas Cassar,* Michael L. Bender,* Bruce A. Barnett,* Songmiao Fan,®
Walter ]. Moxim,® Hiram Levy II,* Bronte Tilbrook®
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The Southern Ocean Biological

Other studies provided Response to Aeolian Iron Deposition
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But also left the door ajar

“Some of the variability in NCP versus

Fe deposition can be explained by other

sources of Fe (such as meltwater,
sedimentary, and upwelling sources),
variable phytoplankton Fe:C quotas,
light and silicate limitations,
parameterization of the atmospheric Fe
dissolution kinetics, aeolian transport
model errors, and wind
parameterization of the piston velocity.”
Cassar et al. 2007
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Export flux and
climate variability

Relatively poorly sampled; few sites sampled in Twilight Zone
Again heavy reliance on satellite data/NPP algorithm/NPP attenuation

Laws et al. (1999) relatively simple global model (temperature/export)
Moore et al. (20002) multi-element foodweb model
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Moore et al. (2002) reports large differences in export flux from these models
Lutz et al. (2007) NPP model with tested algorithm (empirical fit between
regional NPP and export data)
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Lutz et al. (2007) export maps
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Three issues

Model performance ??

No data on interannual variability
No Twilight zone export data



Very large intermodel differences in Southern Ocean export
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Figure 4. Total {gray) and particle (black) carbon export in five latitude bands for the 12 OCMIP
nodels (Table 1) and their mean, the inverse method of SO2 [Sehlitzer, 2002], and satellite-based



Upper bound on how much
export could change

due to climate

variability or change?
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Table 1| Seasonally integrated carbon fluxes at naturally iron fertilized
and HMLC sites and the sequestration efficiency, C/Fe

Carbon {mmolm “y 1) c/Fel | tmalmal™

+Fe ( fertilized) —Fe (HHNLC})
234Th via Si* at 100m 960 290 17,190
Range 626-1,252 166-415 5,420-60,360
Deep fluxt at 3,000m 250 7.1 — THREE to
Best estimatef 280 116 440 F RF LD
Range} 25.0-34.2 7.1-174 195-1.506 OU 0
Core top& 23+05 4.5+ 0.4 123
Interpolated flux at 150 mY| 642 194 11487

Interpolated flux at 200 mY| 483 146 85641




Export data for the Twilight Zone (0.1 to 1 km depth)

“Seasonal production-to-flux analyses

indicate during intervals of bloom

production, the sinking fraction of NPP
is typically half that of other seasons.”

Lutz et al. (2007)
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Lack of consensus



NPP and export — coupling and transfer efficiency

Very few studies
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NPP and export — coupling (Nodder et al., JGR 2005)
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Climate variability — controls on NPP

Variability (+SAM)
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Subantarctic waters — iron, light & silicate
Polar waters — iron and light

Intimate relationships between these factors



Will upwelling increase Fe
supply? mismatch between
depth of ferricline & nutricline

First reported by Johnson et al. (1997)
for low latitude Pacific

Confirmed in subantarctic by Boyd

et al. (2005) and Frew et al. (2006)
Other studies — Rodgers et al. (2008)
modelling impact of this decoupling

Physical circulation?

Particle remineralization length scales?
iron chemistry?, ligands?

Variability (+SAM)

Upwelling

More iron supply?
Deeper mixed layer
Less light
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Climate change — controls on phytoplankton

Higher latitudes (light-limited)
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How will phytoplankton adapt to concurrent effects
of climate variability and climate change?
(Boyd et al. 2008)



Biogeosciences, 5, 847-864, 2008

Climate-mediated changes to mixed-layer properties in the Southern
Ocean: assessing the phytoplankton response

P.W. Boyd!, 8. C. Doney?, R. Strzepek!-, J. Dusenberry”, K. Lindsay®, and I Fung®
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Property Rate of change | RMS variability
per decade (climate
(climate change) | variability)

Temperature deg. | +0.03 to +0.17 0.13

C

Salinity psu -.014 to -.042 0.027

Mixed layer depth | -0.3 to -0.8 2.0

m

Stratification +0.28 to +1.49 0.77

kg/m* x 104

Surface PO, +.001 to -.004 0.012

umol/I

Surface Fe -1.89 to -5.58 3.85

nmol/l x 10-3

pCO, ppmv +37.4 to +41.0 1.2

Light climate 0.003 to 0.005 0.05 to 0.07

(mixed layer) W/m2 W/m2

Ice fraction -.003 to -.013 0.013

T (Celsius)
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Boyd et al.
(2008)
Biogeosciences



Dust isn’t the only game in town
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‘Dust and iron deposition are up to 2 orders of magnitude
lower than former predictions.” Wagener et al. (2008)

A denotes ship-of-opportunity dust sampling

Other Fe supply terms include sediment resuspension & sea ice retreat



Climate variability vs. Change

Boyd et al. (2008)

Climate change will initially be of a similar magnitude
(and sometimes different sign) to climate variability

Climate change may only induce significant biological
effects when the magnitude of the environmental
perturbations exceed the background natural
variability on seasonal to interannual time-scales.

Sign of feedback due to climate change on S Ocean
phytoplankton - UNKNOWN



Detection and attribution of the
effects of climate change on
S. Ocean phytoplankton

Boyd et al. (2008)

3 Scenarios

1) ecosystems are very “plastic” with no or limited changes in
community structure due to the ability of resident cells to adapt
to cIirréate change over years to decades DIFFICULT TO
DETECT

2) the climate change signal can be treated as simply a poleward
migration of “fixed” biomes (e.g. Sarmiento et al. [2004])
EASIER TO DETECT AND MONITOR

3) conditions change enough that a “new” community or
ecosystem arises that has no analogue in current ocean [Boyd
and Doney, 2003] ??77?

STOP PRESS - see Montes-Hugo et al. and Moy et al. (2009)
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New Frontiers in Southern Ocean Biogeochemistry and Ecosystem Research

Key issues to address

Stoichiometry of Fe and nutrient supply
Fe biogeochemistry — regional studies
Fel/light interactions - phytoplankton
Twilight zone and fast export

More process studies — such as SAZSENSE - or FeCycle Il — 1st
GEOTRACES process study
Lab culture experiments with S. Ocean isolates

Better integration of satellite, remote-sensing and the above
process and physiological studies
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