Breakout Group 2: Arctic - 1. Obtain better winter observations - Understanding flux through ice: flux towers - 2. Constrain the fate of primary production - a. Addressing unknown burial rates - Mapping carbon content of existing sediments - b. Lateral transport - Focused deposition; off-shelf transport - 3. Improving satellite algorithms - Arctic COLORS (NASA) ## Breakout Group 3: Great Lakes/Arctic | | Where are we now? | Next steps | Next Next Steps | |-------------|--|---|---| | Arctic | Robust physical/ ice models, but ice still needs major development; Ecosystem box models exist, but do not incorporate biogeochemistry; Some preliminary thoughts about what an ultimate coupled physicsice-BGC model would look like | 5 year timescale Box Models for BGC; can validate presently for summer observations. Need to better understand ice flux, PP in the high Arctic from satellites before development will be robust | 10-year timescale Understanding Robust coupled physical, ice, BGC model Needs: sediment understanding, burial. | | Great Lakes | One of the key challenges is a plethora of individual efforts but no central coordination; Physics and ice are well developed for some lakes (NOAA/GLERL). Some models incorporate biogeochemistry, but not perhaps carbon. Ice still needs some development, Physics need to be better for some lakes | 1-year timescale Modeling workshop or working group, leading to a science plan or proposals or a consortium Vision: modeling the response to multiple efforts Standardized methods, protocols Coordinate individual efforts by disparate agencies towards development of a centralized model effort | 5-year timescale Bringing together everyone that's working would be such a huge leap forward, that integrated model would emerge quite easily Data needs: Modern data necessary! Understanding satellite data quality (quant. and qual. perspectives) |