MEASUREMENTS OF BIOLOGICLAL PRODUCTIVITY

What is needed to do this from floats and gliders?

1. Primary productivity (PP)

*Phytoplankton net: light (z, λ) , biomass (z, λ) , biomass-specific pp coefficients, for models (where measures of biomass could be chlorophyll, optical backscattering, beam c, diffuse attenuation coefficient)

*Community net: dusk – dawn biomass

2. Net O₂ production (Net Community Production)

- *Improved Accuracy of O2 sensor (for determining air-sea gradient)
 - Performance characterization of sensor and drift
- *Limitation--Gas transfer velocity as f(wind), uncertainty of +/- 30%
- *Water-following floats may improve error of gas transfer
- *Problem of bubbles in situ measurements of gas tension & N_2 can correct

3. Production and export of particles (POC & PIC) & DOM (including remineralization and solubilization)

- *Particle inventory measuremets: POC from beam c, optical backscattering and other optical sensors (LOPC, Bishop sensors)
- *Flux measurements optical sediment traps, deep optical spikes; multiple depths; how quantitative?
- * Respiration rate measurements: ΔO_2 , CO_2 , NO_3 changes with time (issues of uncoupled advection of surface and subsurface water masses)
- * Limitation: Sensors for pH and DIC not presently ready
- * Limitation: no in situ method for DOC
- * Limitation: Role of diurnal vertical migrators diel signal of midwater zooplankton/fish respiration

4. Short-term (less than a year) changes in Stoichiometry C:O₂:N:P:Chl

- *Measurements of C or NO₃ change in euphotic zone and below
- *Chlorophyll for changes in phytoplankton physiology
- 5. Issue of smart sampling, so can adjust sampling in response to changes (must have Iridium for two way communication)