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role Stuaries in Shelf-Wide C Budget

DOC in rain
Atmosphere 0.28 + 0.09

(Najjar et al. 2010 Oc. Sci.)



Net.Ecosystem Production Definitions & Concepts

(1) Positive net ecosystem production (NEP, P,) contributes to TOC
export from to shelf; negative P, reduces TOC export to shelf.

(2) Net ecosystem production = gross production — total respiration.
P, =2 (Pg) — = (R)

(3) P, & R from incubated rates or changes in environmental pools.

(4) NEP = physical TOC export - physical TOC import.
P,=>(Fc0) —2 (F;) [@ steady-state]

(5) NEP related to ratio of inorganic-to-organic nutrient inputs.
P, = f(inorganic nutrient inputs)
R = f (organic matter inputs)



Estuarine NEP from C, N, P Mass-Balances

(a) Organic Carbon Balance (b) DIN and TON Balances
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Estuarine Net Ecosystem Production

(a) Organic Carbon Balance

lankton Benthic
Production Production
(P), (PJ,
i o —TE \_'/
Riverlapuat(F ] Ocean Export(F )
— TOC —_—

‘ Atmospheric Pool , ’
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Zlankton | | Benthic
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P. & R Rates From Container Incubations

i _Middle Bay
o %Iankton Production *
R

" (gross)

(after Kemp et al. 1997)



P. & R Rates From Container Incubations

_Middle Bay

o %Iankton Production *
“;'E‘? (gross)
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(after Kemp et al. 1997)



Estuarine Net Ecosystem Production

(b) DIN and TON Balances
A Denitrification (F )

River and

Ocean Export (F )
Atmos'here‘ ! P
Input (F_+F)

River and
Atmosphere
Input (F_+F)

¢ Burial ':‘F._..)




DIN:TOC Ratio Shifts Along Estuarine Axis

a) Surface Concentration

Changes in Ratio Reflect NEP

RN S

* Increase - Heterotrophy
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« Decrease - Autotrophy

c) DIN: TOC Ratio

(Land)

DIN : TON

(Kemp etal. 1997)

Ol -
300 2003 100

Distance from Bay Mouth, km




Estuarine Ecosystem Metabolism

(c) DIN and DIP Balances

River and
Atmosphere
Input (F +F )

River and

Atmosphere
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Pool
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Ocean Export (F )
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LOICZ Computes NEP with WQ Monitoring Data

Upper Estuary Erequency Distribution for NEP

Net Net
Autotrophy Heterotrophy

(Smith et al. 2005)
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Other NEP Methods: Open-Water, High-
Frequency Diel Variations in O, (or DIC)

May 1982 Saturation

August 1982
Saturation
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Factors CGontrolling Estuarine & Coastal NEP
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Factors Controlling Estuarine & Coastal NEP

Inorganic Nutrient Loading

MERL Experiments
Nutrient Enrichment

Inorganic Nutrient Inputs
Rates of P and R

Plankton P

Plankton R
Benthic R
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(1.2) (29) (5.9) (1.2 (228) (45.1) (90.5)

i Treatment
(Oviatt et al. 1986) (N Load - mmol m2d-)




Factors Controlling Estuarine & Coastal NEP:
Water Residence Time
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Log residence time (d)

NEP-Tau Relationship Driven by Several Factors:
* Organic & inorganic nutrient pools in water are
used at long Tau and exported more at short Tau.
* Thus, at long Tau, NEP - zero

» Benthic dominated systems are less affected.



Factors Controlling Estuarine & Coastal NEP:
Water Residence Time
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Factors Controlling Estuarine & Coastal NEP:
Exchanges with Adjacent Wetlands
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Factors Controlling Estuarine & Coastal NEP:
DIN:TOC Ratio of Riverine Inputs

0.5
0.0 01 0.2 0.3

(after Kemp et al. ‘97 MEPS)

2 3
Loading Ratio DIN/TOC (mol N/molC)

* DIN stimulates Autotrophy
* TOC stimulates Heterotrophy



Factors Controlling NEP: Water Column Depth

Channel Station Shoal Station

Benthic Respiration Rate . - — =
vs. Water Depth | ] Pelagic P

Pelagic P

Pelagic R

Depth, m

Benthic Respiration %Total
vs. Water Depth

Benthic R

mmoIO2 2d1 ‘

-
e e
I

\ (Caffrey et al. 98)
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 Significant relationship across diverse systems
 However, lots of scatter among data




Factors Controlling NEP: Water Column Depth

Channel Station Shoal Station

Benthic Respiration Rate . - — =
vs. Water Depth | ] Pelagic P
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 Significant relationship across diverse systems
 However, lots of scatter among data




Factors Controlling Estuarine & Coastal NEP:
Pelagic Respiration & Labile TOC

Pelagic Respiration vs. Chlorophyll-a
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« Significant relationship across diverse systems
 However, lots of scatter among data



Factors Controlling Estuarine & Coastal NEP:
Pelagic Respiration and Labile TOC

Pelagic Respiration vs. Production

15
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 Significant relationship across time & space
 However, lots of variance in P/R ratio (from 1 - 5)



Factors Controlling Estuarine & Coastal NEP:
Light and Temperature Effects on P and R
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] ° o ® (Kemp & Testa 2011)

Water temperature (°C)

« Daytime NEP and Night NEP are proportional to Light & Temperature.
- But relationships are highly variable.



Stuarine C-Budget for East Coast USA:
Preliminary Analysis



Estuarine C-Budget for East Coast USA

Follow-up from VIVIS
VWorkshop in Feb 2012 led to
manuscript in review. for GBC
(Herrmann et al 2014)

Study area: East coast of
USA divided into 3 regions:

» Gulf of Maine (GOM)
 Mid-Atlantic Bight (MAB)
» South Atlantic Bight (SAB)
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Estuarine C-Budget for East Coast USA

O E Coast
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- Data added for other estuaries relating NEP vs. DIN:TOC
» Good fit, but sharp hyperbolic tangent relationship



Estuarine C-Budget for East Coast USA
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» Distinct pattern of higher DIN:TOC in Mid Atlantic region



Estuarine C-Budget for East Coast USA

GOM
B MAB
L sAB
E Coast Total

Export
loss

mol Cm? yr”’

molCm’ yr"

Burial loss Export loss

Simple mass-balance model for 4 fluxes, Input, NEP, Burial, Export
Only 2 fluxes within the estuary, with NEP 3.5 x Burial

MAB NEP is slightly autotrophic, GOM & SAB are heterotrophic
Both NEP and Burial contribute to estuary sink for Riverine Carbon



Epilogue: Other Considerations

----------------------------------------------------



Other Considerations: How to Measure
Exchanges with Adjacent Wetlands

DIC Mass Balance ... . ..

From Marshes (1.44) To the Air (1.79)

Riverine Estuarine Output

Input P(:ligzl)c Respiration to Coastal Waters

(0.12) (0.19)

Estuarine Mixing Zone (Cai & Wang ‘98)

Wetland sources dominate the input side of Estuary DIC budget.
What about Wetland sources of TOC and low-O, water?
How can these fluxes be broadly quantified?

How do the affect the Total carbon budget?



Other Considerations: Benthic Respiration
and Sulfide Burial
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« Anaerobic sulfate reduction causes O, flux to underestimate respiration
* Need ~ 10% correction for O, annual rates; more for seasonal rates



@ther. Considerations: Pelagic Respiration Trends
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» Peak pelagic respiration at 10 km from shore with gradual decline seaward.
» Bacterioplankton account for most pelagic respiration.



Other Considerations: Can Numerical Models
Compute Dependable C-Fluxes & Budgets

Water column Nitrification

A 3.3 DIN

| 0.9PON

NI
DNF: 5.3 TN Mﬁy,,a;% 42 TN

2.5 DIN

Organic matter

Fluxes in 10'° mol N y!

« Generating C, N budgets are undervalued outputs from numerical models.
« Many well-calibrated models represent state of bio-geo-physical knowledge.
 Empirical mass-balance for shelf control-volumes are difficult to constrain.



Concluding Comments

Current Status:
* Many methods available for estimating estuarine & shelf NEP.

* Possible general NEP gradient in estuaries from net heterotrophy
In brackish waters to net autotrophic at high salinity zone.

» Need to expand effort for estimating NEP on shelf systems.

» Significant relations between NEP and physical or chemical
factors, but variance complicates statistical scaling-up.

Challenges for Future:
» Effects of wetland C & O,exchange need to be quantified scaled-up.
* Need more NEP and C burial data and analyses for shelf systems.

* Need to find way to apply numerical bio-geo-physical models to
quantify C-budgets for select estuary and shelf systems, and use to
extrapolate across a broader sample of systems.







Epilogue: Other Considerations

* Fluxes of DIC, TOC, and low-O, between estuary and Wetland?
» Sediment-water O2 fluxes underestimate benthic respiration?
« What are general NEP trends from river to shelf break?

« Can Bio-geo-physical models be useful for calculating
integrated C fluxes and budgets?



NEP Concepts & Approaches in Aquatic Science

Key Early Researchers:
» Tomas Gaarder & H.H. Gran
« Chancy Juday

» Gordon Riley

* G.E. Hutchinson

* H.T. Odum

Approaches:

* Clear & Dark Bottles & Chambers

« AOU: Apparent Oxygen Utilization

« AHOD: Areal Hypolimnion O, Deficit
» Open-Water Diel O, (DIC) Variations
« Chemical Mass-Balance Models




Estuarine Carbon Budget Conceptual Diagrams
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Other Considerations: NEP (P:R) Trends
Across the Watershed-Ocean Transect

Mid-order rivers

Mid-order
rivers

High-order
rivers

Bays
Open shelf
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streams
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m Streams
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Total respiration (log mol C m2 yr 1)

 Significant relationship across diverse systems from streams to open shelf.
 However, trends are highly non-linear.
* Are there simpler monotonic trends from head of estuary to shelf break?
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Net heterotrophy

(Kemp & Testa 2011)



_Middle Bay

' lankton Production *
=12 (gross)




Open-Water Diel Variations in O, (or DIC)

P_(mol O, m*d")
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15
10
5

| el
) 2005 2006 2007

(Testa et al. 2013)



Production

Vascular plant
Py (50)

Inputs
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. Outputs
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(after Kemp et al. 1997)



Factors Controlling Estuarine & Coastal NEP:

Plankton Respiration

{mmot 02 m™> d™)

2

0.1
0.01

— — -Estuaries

(del Giorgio & Williams ‘05

0.1 1 10
Chlorophyll (mg m™>)

)

Table 14.2 Comparison of the rates of benthic and pelagic
respiration in the major aquatic ecosystems. Rates as mmol Cm—2 ¢~
Pelagic Benthic Benthic as
respiration respiration % pelagic

(del Giorgio & Williams ‘05) respiration

Lakes 71 11 15
Estuaries 114 30
Coastal ocean 109 19 17

Open ocean 105 1.6 1.5




