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• Aragonite is the favored CaCO3 polymorph in today’s 
oceans

• Skeletons made of a wide range of polymorphs; 
biominerals not simply precipitates from ambient 
seawater

• Evidence for calcifying space within which organisms 
manipulate saturation state 

• Despite this control, as seawater Ω decreases, significant 
negative impact on the ability to calcify

• Why? Predictive capabilities requires mechanistic 
understanding (corals as an example)
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Physicochemical constrains on mineralogy

Morse et al., Geology, 1997



Organisms Overcome 
Physicochemical Constraints

aragonitic corals in Antarctica vaterite skeletons

Low Mg-calcite 
in warm tropical 

oceans



Mineralization can be intracellular, intercellular or extracellular: 
growing skeleton is seldom exposed directly to external seawater

intracellular

x1200

extracellular

1 mm

Scleroblasts/vacuoles Leptogorgia
(Watabe and Kingsley, 1989)

Between utricles in Halimeda segment
(Justin Ries, WHOI 2007; Torres and Baars, 1992)

Beneath tissue in corals
(Cohen and McConnaughey 2003)



Mineralization by larval oyster in 
under-saturated seawater

Ω~3

20µm

PI

Cohen and McCorkle, 2007

Ω~0.95 Ω~0.2

•Mineralization occurs 
•No dissolution

•Malformations indicate disruption of normal calcification process



Seawater is sequestered into calcifying compartment



Seawater saturation state is elevated by influx 
of Ca2+ ions and efflux of protons

Model 
(Cohen and McConnaughey 2003)

Data 
(Al-Horani et al., 2003)



Evidence consistent with localized Ca2+-ATPase 
activity at coral mineralization site

Zoccola et al., 2004

Also in: 
Coccolithophores (Klaveness, 1976); gorgonians (Kingsley and Watabe 1985)



In situ data consistent with highly supersaturated 
calcifying fluid (Ωaragonite>20)
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Spherulite and crystal morphology (aspect ratio) 
inversely proportional to fluid saturation state

coral

Ω~4 Ω~17 Ω>25

Holcomb et al., in review



Crystal morphologies in coral dissepiment
consistent with Ω~20-30
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Small changes in seawater saturation state elicit strong 
negative response in many calcifiers
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Skeletal development in larval corals

planulae

innoculation

primary polyp – 7 days post-spawn

Cohen, McCorkle, de Putron 2007



Systematic decrease in extent of skeletal 
development (1° and 2° septa, basal plate) in 8-day 

old corals with decreasing Ωaragonite

Ω=0.2Ω=1Ω=2.4Ω=3.7

Cohen et al., (in review)





Observed and predicted sensitivity of larval coral 
calcification to changes in sw saturation state
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Systematic changes in crystal morphology of larval 
coral aragonite with changes in Ωaragonite



Aragonite spherulite and crystal morphology 
(1/aspect ratio) proportional to fluid saturation state

Increasing crystal growth rate
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Energetic cost associated with driving the Ca2+-H+

exchange sets the limit on how much the fluid 
saturation state is elevated

Model 
(Cohen and McConnaughey 2003)



• Biomineralization occurs in a controlled 
environment: seawater saturation state not equal to 
calcifying fluid saturation state 

• Observed responses to changes in seawater 
saturation state occur via (poorly understood) 
biological processes associated with 
biomineralization

• In corals (and other organisms), energetic cost 
associated with raising fluid saturation state limits 
growth rate

• In many, but not all, organisms studied  - larval and 
adult stages - the response is negative in terms of 
survivability/viability
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