Biocalcification Responses to Ocean Acidification: the Interplay of Physicochemistry and Physiology

> Anne Cohen *with* Daniel McCorkle, Justin Ries, Michael Holcomb Samantha de Putron (BIOS)

- Aragonite is the favored CaCO₃ polymorph in today's oceans
- Skeletons made of a wide range of polymorphs; biominerals not simply precipitates from ambient seawater
- Evidence for calcifying space within which organisms manipulate saturation state
- Despite this control, as seawater Ω decreases, significant negative impact on the ability to calcify
- Why? Predictive capabilities requires mechanistic understanding (corals as an example)

CaCO₃ in marine skeletons and skeletal structures

Gorgonian nodules, Zoe Bond

High Mg-Calcite

Ascidian spicule, Joanna Aizenberg

ACC interior, calcite exterior.

Physicochemical constrains on mineralogy

Morse et al., Geology, 1997

Organisms Overcome Physicochemical Constraints

aragonitic corals in Antarctica

vaterite skeletons

Mineralization can be intracellular, intercellular or extracellular: growing skeleton is seldom exposed directly to external seawater

intracellular

Scleroblasts/vacuoles Leptogorgia (Watabe and Kingsley, 1989) Between utricles in *Halimeda* segment (Justin Ries, WHOI 2007; Torres and Baars, 1992)

Beneath tissue in corals
(Cohen and McConnaughey 2003)

extracellular

Mineralization by larval oyster in under-saturated seawater

Cohen and McCorkle, 2007

Ω~3

Ω~0.95

Ω~0.2

Mineralization occurs

•No dissolution

•Malformations indicate disruption of normal calcification process

Seawater is sequestered into calcifying compartment

Seawater saturation state is elevated by influx of Ca²⁺ ions and efflux of protons

Model (Cohen and McConnaughey 2003)

Data *(Al-Horani et al., 2003)*

Evidence consistent with localized Ca²⁺-ATPase activity at coral mineralization site

Zoccola et al., 2004

Also in: Coccolithophores (Klaveness, 1976); gorgonians (Kingsley and Watabe 1985)

In situ data consistent with highly supersaturated calcifying fluid ($\Omega_{aragonite}$ >20)

Spherulite and crystal morphology (aspect ratio) inversely proportional to fluid saturation state

Ω~4

Ω**~**17

Holcomb et al., in review

Crystal morphologies in coral dissepiment consistent with Ω ~20-30

Small changes in seawater saturation state elicit strong negative response in many calcifiers

Langdon and Atkinson JGR, 2005

Skeletal development in larval corals

Cohen, McCorkle, de Putron 2007

Systematic decrease in extent of skeletal development (1° and 2° septa, basal plate) in 8-day old corals with decreasing $\Omega_{\text{aragonite}}$

Ω=3.7

Ω**=2.4**

Ω=1

Ω**=0.2**

Cohen et al., (in review)

Observed and predicted sensitivity of larval coral calcification to changes in sw saturation state

Caldeira and Wickett, 2005

Systematic changes in crystal morphology of larval coral aragonite with changes in $\Omega_{\text{aragonite}}$

Aragonite spherulite and crystal morphology (1/aspect ratio) proportional to fluid saturation state

Using relationship established for experimental abiogenic aragonite, estimate Ω of calcifying fluid

Energetic cost associated with driving the Ca²⁺-H⁺ exchange sets the limit on how much the fluid saturation state is elevated

(Cohen and McConnaughey 2003)

- Biomineralization occurs in a controlled environment: seawater saturation state not equal to calcifying fluid saturation state
- Observed responses to changes in seawater saturation state occur via (poorly understood) biological processes associated with biomineralization
- In corals (and other organisms), energetic cost associated with raising fluid saturation state limits growth rate
- In many, but not all, organisms studied larval and adult stages - the response is negative in terms of survivability/viability