PIC methods for quantifying calcification

Débora Iglesias-Rodríguez National Oceanography Centre, Southampton.

Indirect calculation of PIC

• Aliquot cultures are filtered onto pre-combusted glass fiber filters (GF/C)

• One of two replicate filter sets are treated with a solution of HCI [e.g., 230 μ L of an HCI solution (5 mol/L) added on top of the POC filters] to dissolve the coccoliths and both filters are then analyzed for particulate carbon on a CHN analyzer.

• The concentration of PIC is determined from the difference between the total particulate carbon and the particulate organic carbon concentration.

Direct calculation of particulate inorganic carbon

 \bullet Aliquots of cultures are filtered through 0.22 μm polycarbonate filters

 Filters are washed (before and after filtration) with dilute ammonium hydroxide solution (pH ~9) to remove seawater.
NaOH is avoided as sodium is used as a proxy of seawater contamination.

• CaCO₃ is dissolved using 0.4 M HNO₃ (Romil UpA grade) and keeping the tubes in a rotating platform overnight

Particulate inorganic carbon analysis

 The resulting solution is filtered through 0.45 µm hydrophilic PTFE membranes and analyzed using a Perkin Elmer Optima 4300 DV inductively coupled plasma - optical emission spectrometer (ICP-OES)

 Calibrations are conducted using standard solutions bracketing the range of concentrations measured.

 Sodium concentration was used as a proxy for seawater contamination.

Semicontinuous cultures

Continuous cultures

Cultures are kept at ~constant conditions

D = (vol. medium supplied/hr)/ vol. the culture

Normalization of PIC

- Typically, rates are expressed per cell basis (cellular calcification, e.g. pmol C cell⁻¹ d⁻¹) (biologicaly relevant)
- Growth rates of the culture under nutrient-saturated conditions are based on cell counts made at the same time of day each day

$$\mu = \ln(C_{t+1}/C_t) + D$$

where μ and D are the growth rate and dilution rate (d⁻¹), respectively, and C_{t+1}/C_t is the ratio of cell counts on successive days. Adjustments must be made to the dilution rate.

 Normalization to organic carbon should accompany cellular measurements of PIC (biogeochemically relevant)

Iglesias-Rodriguez, Halloran, Rickaby, Hall, Colmenero-Hidalgo, Gittins, Green, Tyrrell, Gibbs, von Dassow, Rehm, Armbrust and Boessenkool, 2008.

Short-term CO₂ incubations with coccolithophore species <u>Batch cultures</u>

Short-term CO_2 incubations with coccolithophore species

Langer et al. (2006)

Limitations in inferring CaCO₃ from Ca²⁺ measurements

• Magnesium tends to substitute Ca in the calcite lattice, forming "low-Mg calcite" when %MgCO₃ <4, and "high-Mg calcite" when it is >4.

 Calcifiers incorporate substantial amounts of Mg, which is often produced as MgCO₃ (Weber, 1969; Vinogradov, 1953; Chave, 1954; Lowenstam, 1954, 1964; Clarke, 1917).

• The degree of Mg incorporation varies widely amongst different organisms, as well as amongst different skeletal components within a single organism (Ries, 2004).

• Mg incorporation is also known to be largely influenced by seawater Mg/Ca (Ries, 2004) and temperature (Chave, 1954).

Merely calculating the saturation state as:

Ω= $[Ca^{2+}][CO_3^{2-}]/K_{sp}$

of the biomineral (calcite or aragonite) is not adequate for estimating the organism's susceptibility to elevated pCO_2 .

CaCO₃ calculations from Ca²⁺ measurements could underestimate calcification Implications on dissolution of biomineral - susceptibility of organisms to high CO₂

• The saturation state of seawater with respect to Mg calcite:

 $Ω = [Mg^{2+}]^{x} [Ca^{2+}]^{(1-x)} [CO_{3}^{2-}]/K_{x}$ (Plummer and Mackenzie, 1974).

x = mol fraction of Mg ions, and K_x is the equilibrium constant with respect to Mg calcite (ion activity product at equilibrium since stoichiometric solubility products have not been determined).

$Ω = [Mg^{2+}]^x [Ca^{2+}]^{(1-x)} [CO_3^{2-}]/K_x$

Mg is five times more abundant than Ca in seawater:

 substituting Mg for Ca in the above equation will effectively increase the ion concentration product for high Mg calcite

• However, this increase is offset by a proportionally greater increase in the solubility product for high Mg calcite.

The solubility of Mg calcite in seawater will exceed that of aragonite when MgCO₃ in calcite exceeds about 11 mole % [modelling work suggests that Mg calcite with greater than 17 mole % MgCO₃ will be undersaturated in surface seawater by the year 2230 (Morse et al, 2006)].

Tipping points - WP9 re-analysis (Lebrato et al. pers. Com)

Calcifying taxa

- Need to report the pH scale to avoid confounding tipping points
- Saturation states need to be more clearly defined and developed within the concept of a species depending on the Mg content
- Avoid possible confounding tipping points at Omega=1
- We need to re-assess if this is relevant for model outputs

Technical recommendation

 Determine co-variation of calcium and magnesium incorporation into biomineral in response to environmental conditions (effect of nutrient availability, diurnal cycles (sampling time), temperature, Mg:Ca ratios).

Future needs

- Characterization of Mg contribution to the biomineral in calcifiers
- Develop new technologies to 'clean' chlorophyll fraction and potential cellular contributors to Mg other than the biomineral fraction

Thanks to:

- Darryl Green (SOES, NOC, Univ. Southampton, U.K.)
- John Gittins (SOES, NOC, Univ. Southampton, U.K.)