Simulating Southern Ocean Dynamics in Coupled Climate Models

Scott Doney (WHOI)

<u>In collaboration with:</u> Ivan Lima (WHOI) Keith Moore (UCI) Keith Lindsay (NCAR) Irina Marinov (U. Penn) CCSM-3 BGC core group

Supported by:

Ocean Climate Responses & Feedbacks

Ocean Climate Responses & Feedbacks

"IPCC-class" Coupled Climate Models

-energy and mass conserving
-internally driven climate variability
-external climate perturbations (e.g., fossil fuel CO₂)

<u>Climate Models to Earth System Models</u>

The Development of Climate models, Past, Present and Future

OCEANOGRAAHC INSTITUTION

SRES MEAN SURFACE WARMING PROJECTIONS

Future Climate Projections

Major uncertainties:

-CO₂ emissions (social, political, economic, geological) -atmospheric CO₂ (carbon sinks, climate-carbon feedbacks) -climate sensitivities (clouds, water vapor)

"IPCC-class" Climate Models

Opportunities

Coupled dynamics & modes - atm.-ocean-sea ice Past & future projections - extend beyond reanalysis Carbon-climate feedbacks - major source of uncertainty Ecological impacts - climate & acidification Flagship computations - computer resources, multi-model ensembles

<u>Challenges</u>

Coarse resolution - at best eddy-permitting Internal variability - statistical matching with data Coupled systems - large regional errors Simplified biology - lower trophic levels

Coupled Model Uncertainties

Friedlingstein et al. J Climate 2006

Thornton et al. Biogeosci. Disc. 2009

-stratification alters mixed layer depth (light) and nutrient supply -primary productivity lower in subtropics, higher in subpolar gyres & polar regions

"Green-Ocean" Models

Multiple nutrients & phytoplankton functional groups

Δ Primary Production Δ Diatom Index g C m⁻² y⁻¹ 60 50 40 30 20 10 Ö 10 -20 -30 Bopp et al Geophys. Res. Lett. 2005

Marinov et al (in prep)

0.5

0.2

0.1

0.05

0.02

-0.02

-0.05

-0.1

-0.2

-0.5

-1

Climate Change & Biological Response in Ice Biome

Maximum Annual Mixed Layer Depth

Rising CO_2 also leads to ocean acidification threatening shell-forming plants and animals

Aragonite Saturation State

The new paradigm for coupled climate models

CMIP5 (IPCC 5th Assessment)

-Decadal Prediction

high resolution AOGCMs (~50km) initialized for near-term climate change over next 30 years

-Earth System Models (ESMs) with coupled carbon cycle and intermediate resolution (~200km) to study longer term feedbacks

New mitigation scenarios: representative concentration pathways (RCPs)

(Taylor, K.E., R.J. Stouffer, and G.A. Meehl, 2009: A summary of the CMIP5 Experimental Design. http://www-pcmdi.llnl.gov/)

(Moss, R., et al., 2009: Representative Concentration Pathways: A New Approach to Scenario Development for the IPCC Fifth Assessment Report. *Nature*, in press.)

(IAV)

-Skill of model physical projections? Base-state and historical trends •Mixed layer depth, upwelling, sea-ice -Magnitudes of biogoechemical feedbacks? Carbon storage & trace gases Climate/carbon mitigation -Biological sensitivities & resilience to change in temperature, sea-ice, circulation & CO_2 ? •Thresholds, multiple-stressors & trophic mismatch

-Enhanced SO observing system •Oxygen, nutrient & carbon sensors/platforms Mixed layer depth, stratification & upwelling Biological rates & community composition -Modelling advances & opportunities •Nested high-resolution regional atm-ocean models •Model-data skill metrics (NOAA CPT, MAREMIP, J. Mar. Systems, 2009, Vol. 76, Issue 1-2) Biological food-web & impact models (embedded or one-way nested; physics data requirements?) -Biological time-series & process studies •Multi-stressor experiments (ocean acidification, nutrients, trace metals, temperature) Targeted process studies (lab & field) •Cross-ecosystem comparisons

Reduced SH Sea-Ice

More Positive Southern Annular Mode

Volume 78, issues 1-2

20 February 2009

188H 0824-7960

Special Jone Shill Assessment for Coupled Dialogical (Physical Madels of Harine Systems

collect by Daniel R. Lynch, Daniel J. McLellicoddy, Jr. and Francisce E. Werner

JOURNAL OF MARINE SYSTEMS

J. Marine Systems Special Issue on Skill Assessment for Coupled Biological / Physical Models of Marine Systems Vol. 76, Issue 1-2, 2009

Greater uncertainty towards higher values due in part to uncertainty in the size and nature of the carbon cycle feedback

- Subtropical gyres: Climate change decreases NO₃ supply to the ocean surface, total Chl and Primary Production.
- Ice Biomes: Climate change increases light supply to phytoplankton, increasing total Chl and Primary Production

- Increased stratification over most of the ocean

- Less change in Southern Ocean stratification, because of the counteracting impact of stronger winds

Separate ecological biomes (based on physical principles)

* technique as in Sarmiento et al. 2004