

### Putting workshop reports to use:

#### Workshop Recommendations:



#### IMPACTS OF OCEAN ACIDIFICATION ON CORAL REEFS AND OTHER MARINE CALCIFIERS

#### A GUIDE TO FUTURE RESEARCH



**REPORT OF A WORKSHOP SPONSORED BY** 

NSF NOAA USGS

JA KLEYPAS . RA FEELY . VJ FABRY C LANGDON . CL SABINE . LL ROBBINS



- Biological research needs
  - ·Cross-taxa responses
  - •Synergistic effects ( $\Omega$ , T, light, nuts)
  - •Long-term monitoring of community-scale response
  - •Base-line surveys of calcification rates in the field
  - •Biocalcification mechanisms

>Improved oceanic monitoring capability to establish base-lines and track rate and variability

- •Enhanced technologies
- •Observing platforms
- •Long-term time-series hydrographic stations (e.g. BATS, HOTS)
- •Satellite tool development (scale up ship and platform obs, PIC determination)

Better characterization of carbonate chemistry in coastal systems

- •Base-line characterizations
- ·Diurnal, seasonal, decadal variability
- •Much improved carbonate budgets
- •Community Feedback

#### Scoping Workshop on Ocean Acidification Research



Workshop Steering Committee:

Victoria Fabry, California State University San Marcos (chair) Chris Langdon, University of Miami (chair) Barney Balch, Bigelow Laboratory for Ocean Sciences Andrew Dickson, Scripps Institution of Oceanography Richard Feely, NOAA/ Pacific Marine Environmental Laboratory Burke Hales, Oregon State University David Hutchins, University of Southern California Joan Kleypas, National Center for Atmospheric Research Chris Sabine, NOAA/ Pacific Marine Environmental Laboratory

# Ocean Carbon & Biogeochemistry

### 9-11 October 2007 Scripps Institution of Oceanography









## Scientific Questions



> What are the temporal and spatial changes of the carbon system in the global oceans and their impacts on biological communities and ecosystems?

> Will marine calcifying organisms be able to acclimate to elevated  $CO_2$  and/or temperature if given sufficient time?

>How are certain species able to adapt to life in low saturation state water?

Ocean Carbon & Biogeochemistry

> What are the impacts of high  $CO_2$  on calcification, respiration, reproduction, settlement and remineralization?

>What are the effects of high  $CO_2$  on the processes that affect ecosystem responses and global feedbacks?

Ocean Carbon & Biogeochemistry

## Workshop Outcomes

- Each of the four ecosystem focus groups (coral reefs, coastal regions, high-latitude pelagic, & low-latitude pelagic) devised research implementation strategies involving a mix of field observations and manipulative experiments to investigate potential impacts of ocean acidification on key ecosystem processes and organisms
- Timelines of research activities for the next 10 years were formulated by each ecosystem group
- Specific research implementation strategies will be vetted by the community and the final report will be posted on the OCB website

## Conclusions



Ocean acidification is a process that could be impacting present day and future marine ecosystems in ways that we are just beginning to recognize and understand.

> More research is needed to determine the temporal and spatial changes of the carbon system in the global oceans and their impacts on biological communities and ecosystems.

> Manipulative experiments will help us understand the impacts of high  $CO_2$  on calcification, respiration, reproduction, settlement and remineralization.

# Ocean Carbon& Biogeochemistry

> Long term experiments are necessary to observe if marine calcifying organisms will be able to acclimate to elevated  $CO_2$  and/or temperature if given sufficient time.

> We need to discover how certain species are able to adapt to life in low saturation state water.

> We need to know the effects of high  $CO_2$  on the processes that affect ecosystem responses and global carbon feedbacks.

### Coral Reef Program Preliminary Research Objectives



Improve our predictive capability of the geochemical response of reef systems to continued ocean acidification in combination with other variables

- > Understand temperature/saturation state/nutrient interactions (average changes as well as in variability)
- Dissolution at multiple levels (organism to reef) also in terms of possibility of local buffering in certain reef habitats – atoll-size scale
- What are the effects on community structure and their repercussions through the ecosystem - who are winners and losers in terms of ocean acidification?
- Retrospective analyses (paleostudies of the last few 1000 years) provide a baseline of reef accretion processes
- Resolve issues with solubility of mineral phases, kinetic issues
- Develop carbonate chemistry measurement protocols
- Improve remote sensing capabilities with high-spatial/high spectral resolution
- Explore molecular/genomic level of calcification (relative sensitivities of different species to saturation state - then identify the genetics of least and most sensitive)

Ocean Carbon & Biogeochemistry