

US OCB Interests and Needs

Debbie Bronk, Steve Emerson, Craig Carlson, Ken Johnson, Dennis McGillicuddy, and Chris Sabine

 Ability to resolve monthly and inter-annual scale processes

Ability to resolve monthly and inter-annual scale processes
Interdisciplinary

Ability to resolve monthly and inter-annual scale processes
Interdisciplinary
Centers for collaboration

Home institutions of BATS collaborators

Ability to resolve monthly and inter-annual scale processes
Interdisciplinary
Centers for collaboration
Test beds for instruments & methods

 Ability to resolve monthly and inter-annual scale processes Interdisciplinary Centers for collaboration Test beds for instruments & methods Hypothesis generators!!!!

PERGAMON

Deep-Sea Research II 48 (2001) 1449-1470

DEEP-SEA RESEARCH PART II

www.elsevier.com/locate/dsr2

Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis

D.M. Karl^{a,*}, R.R. Bidigare^a, R.M. Letelier^b

^aSchool of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI 96822, USA ^bCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, USA

Weakness of traditional TS:

There are too few of them

Weakness of traditional TS:

There are too few of them
They are expensive

The grim reality.....

NSF Biological Oceanography -HOT BATS 6 coastal LTERs 2 reef monitoring programs

~18-20% of its budget!

NSF Chemical Oceanography -HOT BATS CARIACO OFP - Ocean Flux Program

~12% of its budget!

Weakness of traditional TS:

There are too few of them
They are expensive
Focus on the surface mixed layer

Weakness of traditional TS:

There are too few of them
They are expensive
Focus on the surface mixed layer
Lack of spatial context

Courtesy of Dennis McGillicuddy, WHOI, and the Colorado Center for Astrodynamics Research

Weakness of traditional TS:

There are too few of them
They are expensive
Focus on the surface mixed layer
Lack of spatial context
Inability to resolve daily & event scale processes

SHIP OPERATING SCHEDULE CY 2008 R/V PELICAN

Cruise	Map Index/Area/	P.I./Institution/	Deste	Days/ Agency/
Dates	Purpose	Proposal No.	Pons	Status/Clearance
09 JAN	NA9/GOM	Reginer, R./BMT	Cocodrie	2/Other/F
10 JAN	Moorings	N/A	Cocodrie	No
11 JAN	NA9/GOM/	Rabalais, N/LUMCON	Cocodrie	1/NOAA/F
11 JAN	Hypoxia	N/A	Cocodrie	No
13 JAN	NA9/GOM/	Poore, R./USGS	Cocodrie	2/USGS/F
14 JAN	Sediment Trap Cal	N/A	Cocodrie	No
24 JAN	NA9/GOM/	Orange, D./AOA	Cocodrie	7/NAVY/F
30 JAN	Mud Grabs	N/A	Cocodrie	No
01 FEB	NA9/GOM/	Benson, K./NDBC	Cocodrie	4/Other/F
03 FEB	Moorings	N/A	Cocodrie	No
08 FEB	NA9/GOM/	Herbers, T./NPS	Cocodrie	5/NAVY/P
12 FEB	Surface Waves	N/A	Cocodrie	No
13 FEB	NA9/GOM/	Trowbridge, J/WHOI	Cocodrie	4/NAVY/F
16 FEB	Fluid-Mud	N000140610718	Cocodrie	No

How do we move the science forward?

Moorings! Gliders! Floats!

Resolve time scales of minute to days.

Can respond on the event-scale

Can go where ships can't....or shouldn't!

 Move beyond chl & CO₂ develop platforms and sensors to measure more things!

Expand mechanisms to fund sensor development (e.g. ACT)
Expand training opportunities
Partner with engineering community
Consider effect on early career

The Dream Mooring

temperature conductivity dissolved oxygen in vivo fluorescence underwater PAR current velocities nitrate concentration vertical diffusivity

profiling ability with high frequency resolution DIC ph pCO₂

DOC TDN ammonium iron phosphorus TDP

2. Consider developing a sample archive system.

DNA, RNA, particulates, dissolved
Economy of scale – national repositories?
Look at other programs for precedent – Ocean Drilling Program

3. Establish certified reference materials

Fund development of references Support method intercomparisons Require use of reference materials (tough love as a reviewer!)

4. Establish best-practice manual and technical training and exchange programs.

Examples: JGOFS Standard Method book and POGO – Partnership for Observations of the Global Ocean

5. Continue to streamline and interface datasets.