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Basic Idea:

• Add finely ground (40-um radius) limestone powder to 
regions of the ocean where the boundary between 
saturated (upper) and unsaturated (lower) water wrt 
calcite is relatively shallow (250-500 m depth) and the 
upwelling velocity relatively large (50-100 m/year)

• The limestone powder will dissolve within the first few 
hundred meters of the saturation boundary, restoring 
CO3

2-, increasing the pH, and reducing pCO2
• When this water upwells to the surface, additional CO2

will be absorbed from the atmosphere, pushing pH back 
down, thereby offsetting some of the beneficial increase 
in pH



In the analysis to follow, I use the 7-component 
carbonate chemistry algorithm of Peng et al. 
(1987), and use global datasets on a 1o x 1o

latitude-longitude grid and at 33 depths for total 
dissolved inorganic carbon (TDIC), total alkalinity 

(TALK), dissolved phosphate, temperature, salinity, 
and upwelling velocity
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The analysis to follow consists of 3 phases

• Simulation of the dissolution of falling CaCO3 particles in 
a single column, calculation of the impact on mixed layer 
pCO2 when the carbonate-enriched water upwells to the 
surface, and calculation of the amount of atmospheric 
CO2 that would need to be absorbed in order to restore 
the original mixed layer pCO2

• Analysis of the effect of feedback between atmospheric 
and mixed layer pCO2

• Simulations with a global-scale coupled climate-carbon 
cycle model



Simulations with 5 Representative 
Columns



The reaction when CaCO3 dissolves is 
 
            CaCO3  →  Ca2+ + CO3

2- (1) 
 
This induces the following reactions: 
 

−+− →+ 3
2

3 HCOHCO       (2) 
 

−+ +→ 332 )( HCOHaqCOH       (3) 
 

)(3222 aqCOHOHCO →+       (4) 
 
If reactions 2-4 are fully carried out, the net result is 
 
CaCO3 + CO2 + H2O → Ca2+ + 2HCO3

-                           (5) 
 
That is: one mole of CO2 absorbed for every mole of CaCO3 
dissolved, and no net effect on acidity. 


The reaction when CaCO3 dissolves is

            CaCO3 →  Ca2+ + CO32-
(1)


This induces the following reactions:
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If reactions 2-4 are fully carried out, the net result is


CaCO3 + CO2 + H2O → Ca2+ + 2HCO3-                           (5)


That is: one mole of CO2 absorbed for every mole of CaCO3

dissolved, and no net effect on acidity.
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In reality, less than one mole of CO2 is absorbed from the 
atmosphere for every mole of dissolved CaCO3 entering the 
mixed layer, and there is a net reduction in acidity. 
 
Why? 
 
Because only as much CO2 will enter the mixed layer from 
the atmosphere as is required to restore the initial pCO2 
difference between the mixed layer and atmosphere. 


In reality, less than one mole of CO2 is absorbed from the atmosphere for every mole of dissolved CaCO3 entering the mixed layer, and there is a net reduction in acidity.

Why?


Because only as much CO2 will enter the mixed layer from the atmosphere as is required to restore the initial pCO2 difference between the mixed layer and atmosphere.



For fixed atmospheric pCO2, the following applies after 
adjustment of mixed layer pCO2 to the dissolution of CaCO3: 
 
 
   022 =∆+

∂
∂

∆
dTDIC
dpCOTDIC

TDIC
pCOTDIC pa             

 
 
Thus, the molar ratio MR is given by 
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For fixed atmospheric pCO2, the following applies after adjustment of mixed layer pCO2 to the dissolution of CaCO3:

   

[image: image1.wmf]0


2


2


=


D


+


¶


¶


D


dTDIC


dpCO


TDIC


TDIC


pCO


TDIC


p


a








     


Thus, the molar ratio MR is given by
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Initial Profiles for 5 Representative Columns
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Table 3. Steady state impact on mixed layer properties of applying 200 gm/m2/yr of CaCO3 (assumed to 
be calcite) at 40 μm radius with Cdis = 10-10 m/s/μmole/kg. 

Changes prior to absorption 
of atmospheric CO2 

(changes in TALK are 
twice those of TDIC) 

 
 
 

Column 
TDIC 

(μmole/kg) 
pCO2 
(μatm) 

 
Equilibrium 
adjustment 
of TDIC 

(μmole/kg) 

 
Moles CO2 
absorbed 

over moles 
CaCO3 added 

 
Fraction of 

added CaCO3 
in the mixed 

layer (F) 

 
Mass of CO2 
absorbed over 
mass of CaCO3 

added (R) 

1 39.8 -40.5 28.9 0.727 0.943 0.302 
2 37.6 -27.5 26.2 0.696 0.501 0.153 
3 44.4 -48.7 31.7 0.714 0.587 0.184 
4 33.4 -26.7 20.5 0.613 0.522 0.141 
5 8.5 -10.3 5.2 0.615 0.052 0.014 

Changes in pH Changes in Supersaturation  
Initial Adjustment Final Initial Adjustment Final 

1 0.073 -0.059 0.014 55% -36% 19% 
2 0.063 -0.050 0.013 63% -34% 20% 
3 0.078 -0.063 0.015 62% -41% 22% 
4 0.044 -0.033 0.011 51% -28% 23% 
5 0.012 -0.009 0.003 13% -7% 6% 

 


		Table 3. Steady state impact on mixed layer properties of applying 200 gm/m2/yr of CaCO3 (assumed to be calcite) at 40 μm radius with Cdis = 10-10 m/s/μmole/kg.



		Column

		Changes prior to absorption of atmospheric CO2 (changes in TALK are twice those of TDIC)

		Equilibrium adjustment of TDIC
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		Fraction of added CaCO3 in the mixed layer (F)
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		1

		39.8

		-40.5

		28.9

		0.727

		0.943

		0.302



		2

		37.6

		-27.5

		26.2

		0.696

		0.501

		0.153



		3

		44.4

		-48.7

		31.7

		0.714

		0.587

		0.184



		4

		33.4

		-26.7
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		0.613

		0.522

		0.141



		5

		8.5

		-10.3
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		0.615

		0.052

		0.014



		

		Changes in pH

		Changes in Supersaturation



		

		Initial

		Adjustment

		Final

		Initial

		Adjustment

		Final



		1

		0.073

		-0.059

		0.014

		55%

		-36%

		19%



		2

		0.063

		-0.050

		0.013

		63%

		-34%

		20%



		3

		0.078

		-0.063

		0.015

		62%

		-41%

		22%



		4

		0.044

		-0.033

		0.011

		51%

		-28%

		23%



		5

		0.012

		-0.009

		0.003

		13%

		-7%
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Cumulative Absorption after 200 Years
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Simulations with all 3713 1o x 1o

columns having an upwelling time 
of 100 years of less



Rate of absorption of CO2 for one uniform rate of application of limestone powder, 
showing contributions from groups of columns with different upwelling times
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The effectiveness of adding limestone 
powder in terms of absorbing atmospheric 

CO2 decreases with increasing rate of 
application, varies between columns in 

different upwelling bins, and varies over time
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Optimization Strategy:
• Compute the marginal effectiveness of adding 

limestone powder in each of 3713 columns for 
successively greater rates of limestone addition

• Sort all of the column/limestone-increment 
combinations in order of decreasing 
effectiveness

• Prepare a plot of rate of absorption of CO2 vs 
total rate of addition of limestone, as the rate of 
addition of limestone is increased according to 
the order established in step (2). 
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Global-scale Interactions
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Balance Equations: 
 
Domain 1 pCO2 
 

0)()()( 2212 =∆+∆−∆ pa pCOpCOpCO              
 
Domain 2 pCO2 
 

0)()( 222 =∆−∆ apCOpCO                    
 
Conservation of mass 
 

021 =∆+∆+∆ aCCC                 
 


Balance Equations:


Domain 1 pCO2
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 EMBED Equation.3  [image: image2.wmf]





      


Domain 2 pCO2
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Impact of Dissolving 2 Gt CaCO3 into the Mixed Layer of 
Domain 1
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Simulations with a coupled climate-
carbon cycle model 





Scenarios and Assumptions
• Scenario 1: Fossil fuel CO2 emission 

peaks at 17.5 Gt C/yr in 2100, then 
declines by 1%/yr

• Scenario 2: Fossil fuel CO2 emission 
peaks at 7.5 Gt C/yr in 2010, drops to zero 
by 2100, and stringent reductions in 
emissions of other GHGs or precursors 
occur

• Climate sensitivity of 3 K
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Conclusions
• Phasing out CO2 emissions by 2100 has the 

single largest impact in reducing the ocean 
acidification that will otherwise occur

• Extraordinary additional measures (adding 4 Gt 
limestone/yr to the ocean for > 200 years) 
provides a modest additional benefit

• Compared to sequestering 0.5 Gt C/yr in soils or 
in geological strata, adding 0.5 Gt C/yr of 
dissolved CaCO3 to the mixed layer (by adding 4 
Gt/yr of limestone powder) has

• - about twice the effect of ML supersaturation,  
• - about the same effect on ML pH, and
• - about ¾ the effect on atm pCO2 and ∆T   
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