

Using functional genomics to explore the impacts of ocean acidification on calcifying marine organisms

Gretchen Hofmann UC, Santa Barbara USA

Thanks to: Workshop Steering Committee
OCB &
NSF's Office of Polar Programs

Outline of the presentation

- Highlight gene expression approaches
- Sample data from sea urchin studies
 - Organismal response larval skeleton development
 - Compensation/plasticity/ adaptation
 - Synergistic effect of temperature and CO₂
- Strategies for future research

#1 Organismal response: skeleton formation in sea urchin embryos and larvae

Strongylocentrotus purpuratus

Embryos with fertilization membrane

4-arm echinopluteus larvae

Juvenile purple sea urchin
© Gerardo Amador

- 1) Utility of early life history stages
- 2) Sea urchin: Developmental model

Our multidisciplinary approach

4-arm stage Lytechinus pictus

Morphometrics

 Measure the elements of the larval skeleton

Gene expression analysis

- Ask the embryo to tell you the answer.
- Generating "physiological fingerprints"

First-cut experimental approach

Gas Mix

Experimental approach? Use IPCC scenarios for future CO₂ levels

- Used IPCC Scenarios (by 2100)
 - Present 380 ppm CO₂
 - **B1** 540 ppm CO₂
 - **A1F1** 970 ppm CO₂

Postdoctoral Fellow Dr. Michael 'Moose' O'Donnell

 Raise larval cultures at 15 °C

Body Length vs. Development in Lythechinus pictus larvae

Larval Measurements

- 1. Body length to tip of oral hood
- 2. BL to ventral arch
- 3. Left body rod
- 4. Left post-oral arm
- 5. Right body rod
- 6. Right post-oral arm
- 7. Left transverse rod
- 8. Right transverse rod
- 9. Body width
- 10. Width at tip

Body Length: 48 h

Total Skeleton: 48 h

Mean Body Length and Total Skeleton vs. Time

Making Hard Parts What genes to choose?

#2: Linking plasticity & physiology with gene expression

- 1. Biomineralization chip in prep.
- 2. E.g., lots of spicule matrix proteins
- 3. Oligo microarray from Agilent ~1,500 genes60-mers \$170/array

Spicule Matrix Proteins	Gene ID	Exp. Notes
SMP30-A	SPU_000825	High in prism
SMP30-D	SPU_000828	Low in prism

The "raw" data

Red = up-regulated

Green = down-regulated

Yellow = no difference

Zoom in

Turned on §

Zoom in

Turned off

Another way to look at the data on the chip

- Spots are genes we know
- For example, gene chip for mussels
 - − ~3,000 genes of interest
 - Classified by function

An ecological example:
Thermal stress in
Intertidal mussels

Physiological fingerprints says: Oregon is hot!

 Mussels at Oregon site have strong upregulation of "stress" genes in summer

#3: Synergistic effects

- All cultures raised at 15 °C
- Three levels of CO₂
- What happens to physiological plasticity?

(Not just biomineralization)

The red sea urchin: S. franciscanus

Changes in thermal phenotype

Strategies or what to do while we wait for the genome...

- Study highly conserved genes
- Work on targeted species with good genomic resources
- Vegas baby!
 Heterologous hybridizations

Jackson et al. (2007) Science

Veliger stage Nucella ostrina

Cross-species primers

 Genes responsible for biomineralization in the pearl oyster

Nacrein RT-primers from the pearl oyster used with other molluscs

(Takeuchi and Endo 2006)

- PCR product size ~150-250bp
- Some success with other genes (msi60 and aspein)
- In process of sequencing the product

Nacrein

Antarctic sea urchin

Sterechinus neumayeri

qPCR data

☐ Cross hybridization to purp cDNA chip

Suggested strategies & priorities for OA studies

- These approaches can be applied to many organisms
- Significant areas
 - Compensation?
 - Synergistic effects
 - Species interactions
 - Metagenomics
 - Genome project proposals to JGI
 - Training gap and collaborations

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Metazoan examples

Acknowledgements

Supported by: U.S. National Science Foundation &

David and Lucile Packard Foundation and the Moore Foundation (PISCO)

Data from:

- Tim Crombie
- LaTisha Hammond
- Dr. Moose O'Donnell
- Dr. Sean Place
- Dr. Anne Todgham
- Mackenzie Zippay

