N₂ measurements by the gas tension method

Craig McNeil (APL/UW)

Eric D'Asaro (APL/UW) Bruce Johnson (Pro-Oceanus Systems, Inc.)

Overview:

1. Measuring N_2 using gas tension method

2. Overview of the gas tension device (GTD)

3.Measurement errors

4.Some results from the field

5. Overview of pCO₂ sensor

1. Measuring N₂ using gas tension method

Gas tension (or total dissolved gas pressure) is:

 $P_{T} = pN_{2} + pO_{2} + pAr + pH_{2}O + pCO_{2} + \dots$ $\sim 78\% \quad \sim 21\% \quad \sim 1\% \quad 1 \text{ to } 5\% \quad \text{usually negligible}$ $`GTD' \quad `optode' \quad `assume' \quad `TS'$ $`SBE43' \quad pN_{2} \approx P_{T} \quad = \quad pO_{2} \quad = \quad pAr \quad = \quad pH_{2}O$ use: $[Gas] = S_{H}(T,S) \times pGas \quad (\text{Henry's Law})$

- 2. The gas tension device (GTD)
- Moored GTD

- Shipboard GTD

- Float GTD

 $\tau \sim 2 \text{ min at surface}$ $\tau \sim 10 \text{ min at 60 m}$

Equilibration time for float GTD

Pulse pumping is 2 times slower but 90% more efficient! 1.7 times faster at 35 °C than 5 °C

Compressible H < 10 m

Dynamical response of float GTD

3. Measurement errors for N₂

1) Gas solubility coefficients, $S_H(T,S)$ - big

 $S_{H}(N_{2}) \sim 0.14\%$ $S_{H}(O_{2}) \sim 0.2\%$ $S_{H}(Ar) \sim 0.13\%$ [Hamme & Emerson, 2004; Garcia & Gordon, 1992]

2) Winklers - big

 $[O_2]$ ~ typical 0.5 %, at best 0.2% NB: error on pN₂ is 0.14%, at best 0.06%

3) Assume Argon levels - medium

a) best use Ar sat = N_2 sat (recursive approach); within 2% at HOT/BATS

or b) Ar sat =100%, and conservatively within 10% equilibrium

NB: error on pN_2 is 0.03% for assumption (a), and 0.13% for assumption (b).

4) Gas tension - small

accuracy: ± 0.2 mbar or ~ 0.02% precision ~ 0.00001% drift > 0.02% per year ! Reported T controlled water bath tracks air pressure to within $\pm 0.07\%$ over 8 days. Minimum predicted error for $[N_2]$ is $\pm 0.25\%$ (requires careful Winklers and GTD equilibration)

Mass-spec (MS) intercomparisons

Time series: Emerson et al. [2002] made comparisons over 2 yrs at HOTS, reported pN₂ better than ± 0.5%

Vertical profiles: McNeil et al. [2006] using floats at < 45m depth in Puget Sound showed GTD-N₂ up to 2.8% higher than MS-N₂. Co-located sampling is hard to do, but this difference was large. Unresolved, needs more work!

4. Some results from the field

Sea surface gas tension during DOGEE-II (NE Atlantic off Portugal)

Collaborators: Eric D'Asaro (APL/UW) Rob Upstill-Godard,(UK) Phil Nightingale (UK) Will Drenan (U Miami) Mike DeGrandpre (U. Montana)

5. New CO₂ sensor uses same patented membrane interface

response: 3⁺ minutes depth: 1000 m size: 17x33 cm power: 5⁺ Watts accuracy: $xCO_2 \pm 1$ ppm (approx) precision xCO_2 : ± 0.01 ppm

6. Summary

- Measurements of N₂ provide information on gas exchange and productivity; complements O₂ as proxy for 'abiotic O₂'
- Gas tension is very precise and stable (± 0.02 % per year), has been measured on ships, moorings, and profiling floats
- Estimate N_2 to better than $\pm 0.5\%$; needs good TS and O_2 (Winklers)
- Expect new low power float sensor suit to measure $O_2/N_2/CO_2/CH_4$

Dynamical Response of Profiling GTD

$$\frac{dP_M}{dt} = -(P_M - P_T)/\tau_g + w\beta_m(p)$$

$\tau_g(p)$	= equilibration time of GTD
$\beta_m(p)$	= isothermal compressibility of membrane (or $1/K_m$)
w	= vertical velocity of float
P_M	= measured pressure of GTD
P_T	= true gas tension of the water
Р	= hydrostatic pressure

Forward Solution: use 'best guess' for $P_T(z)$, integrate then compare to P_M

Inverse Solution: solve directly for P_T