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U.S. ECoSU.S. ECoS

1. What are the relative carbon inputs to the MAB and SAB from 
terrestrial run-off and in situ biological processes?
2. What is the fate of DOC input to the continental shelf from 
estuarine and riverine systems? 
3. What are the dominant food web pathways that control carbon 
cycling and flux in this region? 
4. Are there fundamental differences in the manner in which     
carbon is cycled on the continental shelves of the MAB and SAB? 
5. Is the carbon cycle of the MAB and SAB sensitive to climate 
change?

Goal: To develop carbon budgets for the U.S. east coast     
continental shelf (Mid-Atlantic Bight and South Atlantic Bight)

Research Questions:



Project StructureProject Structure

Personnel - 14 science investigators, 10 institutions

Breadth of expertise - modelers and
observationalists

Multiple subgroups working in parallel with an
overall focus on model-data comparisons

Parallelism coupled with frequent communication

Builds diversity



Combined

Hofmann et al. (2008)



Northeast North American shelf model (NENA)
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MAB Sea-to-air oxygen flux
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Combined



DOC & CDOM field measurements

From cruises in 
Southern MAB, 
including lower 
Chesapeake Bay.

Seasonal algorithms 
needed.  Offset due to 
net community 
production of DOC 
and bleaching from 
spring to summer.
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Combined



Space-based DOC estimates

DOC concentration (μM)



14C-based  from 
MARMAP program Satellite-based (VGPM2A)

Primary production
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Long Term Trends
1998-2006
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SST trend
-0.2° to 0.3°/yr

Chl trend
-5% to 5%/yr



SAB 
Chlorophyll 
dynamics

Correlation 
with 
discharge

0.84

0.60

0.73

0.53
Signorini and 
McClain (2006, 
2007)



Combined



Central Gulf of Maine O2 anomaly climatology
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Approach:
1-D physics + horizontal advection terms from 3D model
Same biogeochemical model as is running in 3D;

reproduces 3D model results very well
Assimilate ocean color or in situ data (variational adjoint method)

for optimization of biogeochemical parameters
(e.g. max. growth rate; C:chl ratio)

Runs quickly
Goals:

Test new parameterizations and formulations
Perform parameter sensitivity/optimization 

analyses 
Quantitatively assess optimal model-data fit 

via cost function

Data assimilation framework: 1D implementationData assimilation framework: 1D implementation

Friedrichs et al.Friedrichs et al.



Impact of parameter optimization



SeaWiFS Assimilation ResultsSeaWiFS Assimilation Results

The variational adjoint method of data assimilation can be 
used to improve the model-data comparison:

max growth rate [d-1]

a priori: μ0 = 1.0 optimal: μ0 = 0.38 ± 0.20

max Chl:C ratio [mgChl mgC -1]
a priori: Chl2C = 0.0535      optimal: Chl2C = 0.030 ± 0.009

Data assimilation is used as an approach for 
improving model structure



Combined



Evaluation of model physics—
salinity
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Evaluation of model physics—
mixed layer depth

Observations Model Observations Model
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Evaluation of model 
biogeochemistry—oxygen anomaly

ObservationsModel ObservationsModel

June December



Qualitative model-data comparisons 
are not enough!

Qualitative model-data comparisons 
are not enough!

We need to assess model skill quantitativelyWe need to assess model skill quantitatively
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Model-data Fusion to Assess SkillModel-data Fusion to Assess Skill

SeaWiFS chlorophyll

NENA model
chlorophyll
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Quantitative comparison by region
with parameterization refinement

Quantitative comparison by region
with parameterization refinement
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Misfits of means and variability

model-data misfit =
variability in data

model-data misfit =
error in data

Normalized Target diagram for SSTNormalized Target diagram for SST

MAB subregions
n_Bias

n_RMSCP

Friedrichs et al.Friedrichs et al.



Combined



CONVERGENCE

Druon et al.
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Number of models that predict an 
increase in summer precipitation

Christensen et al. (2007).  A1B scenario, 1980-1999 to 2080-2099 



Closing RemarksClosing Remarks

U.S. ECoS Goal: To increase our understanding of 
carbon cycling in U.S. east coast continental shelf waters

• Integration of modeling and data analysis from 
outset is critical to addressing project goal

• Extensive collaboration of observationalists
and modelers—more progress results than 
each component working independently

• Model advancement requires quantitative skill 
assessment coupled with data synthesis



Closing RemarksClosing Remarks

• Interdisciplinary team focused on a single 
coupled circulation-biogeochemical is an 
effective way to address complex issues, such 
as carbon cycling in marine ecosystems 

• Single model forces the team to resolve issues 
and reconcile differences of opinion—end 
product is stronger



Thank you
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