Testing Sverdrup's hypothesis with a profiling float

Emmanuel Boss and Michael Behrenfeld (+UW, WETLabs, Perry)

The hypothesis: in the sub-polar North Atlantic spring restratification (following winter mixing) is required for phytoplankton biomass to accumulate (have positive net community growth).

Distribution of ARGO floats

Float profiles every 5days from 1000m, CTD + b_{bp} and F_{chl}

The NA spring bloom (most studied phenomena in Biological Oceanography):

On Conditions for the Vernal Blooming of Phytoplankton.

By

H. U. Sverdrup, Norsk Polarinstitutt, Oslo.

1953

$$\frac{\partial P}{\partial t} = (\alpha I - r)P, \qquad \alpha, r - const.$$

Blooming: $\partial P/\partial t > 0$.

In the oceans: $I(z) = I_0 e^{-kz}$

When phytoplankton are mixed too deep they cannot bloom.

Float results (monthly averages):

 \rightarrow Have approximately 6 estimates of growth rates per month each year

Uncertainty \equiv standard error of the mean

Vertical integration: to 300m depth (differences are very small compared to integrating to max(MLD, Euphotic depth).

Findings:

We observe values of net growth suggesting grazing rate \approx phytoplankton growth. Net growth becomes positive near when the light is minimal.

Traditional views of the 'bloom' are biased by focusing on dP/dt rather than dlnP/dt.

Sverdrup hypothesis has a simplistic parameterization of the loss term (-rP):

$$\frac{\partial P}{\partial t} = (\alpha I - r)P, \qquad \alpha, r - const.$$

At least two additional nonlinear loss rates are currently recognized:

$$-gPZ-\beta P^2$$

When the water is mixed to depth in the winter, both are reduced (dilution).

In addition, phytoplankton respiration has been found to be almost negligible in cold dark conditions.

A vision for the future: the Riley (or NPZ) float Boss et al., 2008, *EOS* N: ISUS

P: FL-NTU

Z: LOPC/Gorsky/novel cheap acoutic b_b

+PAR & O₂

Minimum sensor-suite to constrain ecosystem models.

Our current vision is constrained to be 'bottom-up' by the lack of cheap zooplankton sensors

The age of exploration is not over!

Histograms of estimated μ_{Net}

