#### **Kiel Oxygen Projects**





Tengberg, Körtzinger *et al.* (2006). Evaluation of a life time based optode to measure oxygen in aquatic systems. *Limnol. Oceanogr. Methods* **4**, 7-17.



## Oxygen optode: Long-term stability



## Oxygen optode: Long-term stability





Körtzinger et al. (2005). High-quality oxygen measurements from profiling floats: A promising new technique. *J. Atm. Ocean. Techn.* **22**, 302-308.

# Denis Gilbert et al., Argo Science Workshop 3, Hangzhou, China, March 27, 2009



## Oxygen optode: Results from moored profiler (McLane MMP)

Temperature of Optode



Brandt & Körtzinger, unpubl.

## Oxygen optode: Results from moored profiler (McLane MMP)



Calibrated Oxygen

#### Oxygen optode: Results from calibration casts on CTD-O<sub>2</sub> system



Brandt & Körtzinger, unpubl.

#### Oxygen optode: Individual sensor laboratory calibration (at Bjerknes Centre, Bergen/Norway)



Sparge air controller se cylinders of pre-mixed a can make any N<sub>2</sub>/O<sub>2</sub> ble with mass flow controll Sparge frit sits just belo water surface (not visib

**Mechanical mixer** 



ssel is vented through a heter tube. Head space ide the vessel is kept to hinimum.

emperature control via uter jacket is stable to .01°C.

or taking Winkler bles. Triplicate samples ch calibration point ide the reference.

Neill & Brown, unpubl.

## Oxygen optode: Individual sensor laboratory calibration (at Bjerknes Centre, Bergen/Norway)

- Calibrations done in freshwater
- 6 x 6 matrix (temperature x oxygen; since 2009: 6 x 8)
- *p*O<sub>2</sub> is calculated from Winkler-O<sub>2</sub> and fit as function of B Phase and temperature (5<sup>th</sup> degree polynomial with 21 terms, since 2009: 3<sup>rd</sup> in temp. and 5<sup>th</sup> in B phase)

| Calibration tests in seawater      |          |        |           |           |                        |           |          |
|------------------------------------|----------|--------|-----------|-----------|------------------------|-----------|----------|
|                                    |          |        | opto de 1 | opto de 2 | opto de 3              | opto de 4 | optode 5 |
| Temperature                        | O2 conc. | salt   | error     | error     | error                  | error     | error    |
| 0.16                               | 252.07   | 32.096 | 0.9       | 0.9       | 0.6                    | 1.1       | -1.3     |
| 0.17                               | 395.9    | 32.062 | 0.2       | 1.3       | 0.7                    | 0.6       | -2.4     |
| 19.58                              | 290.61   | 0      | -1.6      | 0.0       | -1.1                   | -0.4      |          |
| 21.06                              | 164.91   | 32.532 | 0.7       | 1.4       | 1.2                    | 1.4       |          |
| 21.07                              | 256.07   | 32.514 | 0.8       | 2.0       | 1.6                    | 2.2       |          |
| 7.14                               | 218.13   | 32.445 | 1.1       | 1.7       | 1.5                    | 1.8       | -1.9     |
| 7.13                               | 336.8    | 32.71  | 1.3       | 2.9       |                        |           | -2.9     |
| -1.81                              | 269.41   | 32.445 | 1.6       | 2.0       | Laboratory calibration |           | 0.0      |
| -1.51                              | 270.57   | 32.53  | 0.7       | 1.7       | to <2 µmol/kg          |           |          |
| -1.79                              | 411.28   | 32.096 | -0.3      | 0.9       | 0.5                    | -0.5      | -1.8     |
| -1.52                              | 416.49   | 32.527 | 0.9       | 3.0       | 1.7                    | 1.5       |          |
|                                    |          |        |           |           |                        |           |          |
| mean absolute errors               |          |        | 0.9       | 1.6       | 1.2                    | 1.4       | 1.7      |
| mean error for negative temps only |          |        | 0.9       | 1.9       | 1.2                    | 1.3       | 0.9      |

# **New features of optode 4330**

- New processor, 25 kHz (older model 5 kHz),
- Sinusoidal excitation gives lover noise (older model squared pulse),
- Optimized optics (better geometry),
- Temperature sensor closer to foil and faster response time (less than 2 s),
- Introduction of red reference LED. Reduced risk of electronic drift.
- Possible to use transparent foils. Fast response, less than 8 s, 90 % response.
- Possibility to offer better calibrations. 30-point and Winkler-checked. Yields accuracies of around 1 %.
- Output CAN bus & RS232.







SOPRAN, Sub-project 3.5 (Körtzinger & Heimann) Sea-Air fluxes of  $CO_2$  and  $O_2$  in the eastern tropical Atlantic: a combined atmosphere-ocean perspective









- Deployment: 24. Oct. 09 Recovery: 29. Dec. 09 Duration: 56 days of profiling
- 45 profiles in upper 200 m for T,S,O<sub>2</sub> & CO<sub>2</sub>
- 111  $pCO_2$  measurements, 1800  $O_2$  measurements
- No GPS positions for profiles5 45 (malfunction)





SOPRAN, Sub-project 3.5 (Körtzinger & Heimann)

Sea-Air fluxes of  $CO_2$  and  $O_2$  in the eastern tropical Atlantic: a combined atmosphere-ocean perspective



M-GEOMAR – Leibniz-Institut für Meereswissenschaften an der Universität Kiel

Sea-Air fluxes of  $CO_2$  and  $O_2$  in the eastern tropical Atlantic: a combined atmosphere-ocean perspective

Measurement Performance



IFM-GEOMAR Leibniz-Institut für Meereswissenschaften an der Universität Kiel

SOPRAN, Sub-project 3.5 (Körtzinger & Heimann) Sea-Air fluxes of  $CO_2$  and  $O_2$  in the eastern tropical Atlantic: a combined atmosphere-ocean perspective

Fiedler & Körtzinger, unpubl.



4

Honeywell Durafet Ion Sensitive Field Effect Transistor pH sensor – a potential float/glider sensor

- Long-term stability months at ±0.006 pH in seawater
- mm High temperature stability weeks of cycling 5 to 35℃ in equimolar buffers (pH=pK(T)) show >0.01 pH stability
  - Pressure tolerance is now limiting factor. Reengineering packaging to be pressure tolerant – device operating to 2000 dbar pressure routinely in lab.
  - Low power (µWs), low weight (grams), fast (<1 s)





Körtzinger et al. (2004). The ocean takes a deep breath. Science, 306, 1337.

### "Labrador Sea showcase": more science to come ...



## "Labrador Sea showcase": more science to come ...



## Eastern tropical North Atlantic: OMZ and upwelling dynamics



#### Eastern tropical North Atlantic: OMZ and upwelling dynamics



30°W

25°₩

20°W