The Upper Cell

- 1. Climate change illuminates processes operating in the basic state
- 2. Link between interior and mixed layer key
- 3. Role of eddies complex much vertical structure hidden by net results

Salinity suggests intermediate freshwater "cell" but interior climate signal is strongest in mode waters

mean advection versus diffusion from source region

Subduction and the Upper Cell

Ekman transport Mean flow Eddy transport

Southern Ocean

The Upper Cell

Brings warm UCDW up Brings natural carbon up Brings low oxygen up

Takes surface carbon down Takes surface freshening down

Has mixed layer processes imbedded

Mean Flow and MLD

ACC and mixed layer mass transport

35

30

25

20

10

Geostrophic transport/length in mixed layer density classes -> accumulation in denser deeper mixed layers

Net ML transport by density: 20 Sv transferred from mode water to AAIW in MI

Mixed Layer Transports

Gent McWilliams interior (sub-mixed layer) eddy parameterization

Treguier et al. (97) everything spreads into the ML.

Ferrari & McWilliams (08): only a portion of the transition layer transport spreads into the ML.

Subduction = $\nabla \cdot (U_{eddy} + U_{ek} + U_{geo})$

Sensitivity to lateral mixing coefficient K

 $U_{eddy} = K x$ isopycnal slope

Use K from Sallee et al (2008), compare to others

- surface estimate, projected throughout seasonal ML

Maps of Subduction

Sections of Subduction

Indian (110-130 E)

Pacific (120 130 W)

x 10⁻¹¹

-25

PV

Sections of Subduction

S

Indian (110-130 E)

Pacific (120 130 W)

Summary

The upper Upper Cell

20 Sv coming up + south, 20 Sv going down, creating mode waters

Eddies tend to cancel mean flow at high and low densities

Eddies tend to concentrate subduction at fronts

Sallee, Rintoul, Matear (2009) find carbon fluxes associated with these subduction estimates.

ML Evolution Predicted trends in ST

Predicted trends in surface temperatures over the next 100 years from a weighted average of the 20 coupled models used in IPCC AR4 (Bracegirdle et al., 2008).

Mixed Layer Response: SST

Driven by modified atmosphere-ocean heat fluxes and Ekman flow

FAST

•SST responds to the SAM within 1 month

Between 50-65°S cooling due to enhanced northward Ekman transport
Between 30-45°S warming due to

anomalous southward Ekman transport

SLOW.

•2-3 yr lagged warming in eddy-resolving models in south, *outweighs* initial cooling

Screen et al J. Climate 2009

Mixed Layer Response: MLD SAM+ SAM-

MLD Trends may be important for subduction, productivity Sallee et al. 2009

Questions

Is there an "oceanic SAM"?

Most variability is associated with meandering fronts
Most meandering is a response to SAM or ENSO
Internal EKE variations are ~ EKE variations forced by wind

Is overturning adiabatic or diabatic below the ML?

Nonlocal fluxesNonlinear EOSHighly intermittent processes

How are natural carbon, warm deep water brought to the surface?

Ekman upwellingRecirculation in the TL and MLUpper Cell eddy-driven upwelling

What do we need a SOOS for?

- •Freshwater fluxes
- Acidification