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Anthropogenic CO2
uptake currently controlled 
by ocean circulation; but 
in future, what will be role 
of climate & biology?

For ocean acidification 
may want models to 
address many different 
aspects:
-patterns & trends in 
seawater chemistry
-population biology of 
individual species
-food-web & ecological 
interactions
-biogeochemical 
feedbacks
-socio-economic effects 
on fisheries & ecosystem 
services

Ocean Carbon Cycle & 
Ocean Acidification



"People don't understand the earth, but they want to, so 
they build a model, and then they have two things they don't 
understand,”
-Gerard Roe in “The Whale and the Supercomputer” by C. Wohlforth

"I am never content until I have constructed a mechanical 
model of the subject I am studying. If I succeed in making 
one, I understand; otherwise I do not.“
- Lord Kelvin

Data

Simple 
models

Complex 
models



The Interdisciplinary Conundrum 
Physics

•(relatively) simple set of (mostly) known governing 
equations (Navier-Stokes) => complex phenomenon
•unresolved scales

Chemistry
•mass balance equations
•chemical fields integrate over time/space variability
•don’t uniquely identify process/mechanism

Biology
•information as stories and conceptual pictures
•historical/evolutionary contingency 
•no “biological” Navier-Stokes
•aggregate complicated dynamics across multiple-
scales (genes, cells, populations, ecosystems)



Why do we build/use models?
-Quantitative dynamical framework

•Are different data sets, rate estimates consistent?

-Hypothesis testing
•If we add or change X, what happens?

-Forecasting
•What will the ocean look like at some point in 
the future?

-Solving for unknown parameters and rates
•Given things we can measure, can we estimate 
can we estimate properties that are difficult to 
measure?

-Design of experiments & observing systems
•What, where and when do we sample?



“Stocks” versus “Rates”
C                     dC/dt

Estimated from data
Unknowns



What is a model?
-regression curves

variable Y is a function of other variables X and 
regression parameters p:

Y=f(variables, parameters)
Chl = p0 + p1T

-forward models (often time dependent)
Integrate forward in time to find Y: 

dY/dt = circulation + f(variables, parameters, forcing)
d Phyto /dt = circulation + μ*Phyto*(1-e-αE/μ) -λPhyto  

-inverse models 
Invert the problem to find parameters from data: 

Parameters = f(circulation, data, forcing)



What is a model? (continued)
-diagnostic versus prognostic models 

In diagnostic models, some variables may be 
prescribed based on observations:
e.g., satellite chlorophyll => ecosystem model

(no equation for dChl / dt)

-data assimilation
Combine model equations and observations in a 
dynamically consistent fashion

e.g., weather prediction
analysis = f(model forecast, observations)

Prognostic, forward models needed to 
project into the future



From Word Problem to Equations
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•Functional form
Logistic model

•State variable (concentrations)
P (mmol C/m3) phytoplankton

•Parameters
μ0(1/d) and Cp (mmol C/m3)

•Phytoplankton levels depends on nutrient inputs
•Perturbations relax back to some stable background level
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Simple NPZ Model
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•Three coupled ordinary differential equations
•Mass conservation



Discretization & Numerical Integration

numerical method:
Euler’s Method

•Subdivide time into discrete time-steps
•“Integrate” forward using Δy/Δt approximation
•Numerical methods introduce errors

dy
dt

= f t, y( )

Δy = f (t,y)Δt

yn +1 = yn + f (t n, yn )Δt

Discrete form

error

Δt



Discretization & Numerical Integration

Runge-Kutta (2nd order)

•use a “trial step” to find gradient at mid-point
•even with 2x larger Δt, more accurate integration

yn +1 = yn + k2

error

k1 = f (t n , yn )Δt

k2 = f (t n + 1
2

Δt,yn + 1
2

k1)Δt



How do you estimate parameters and 
functional forms?

Laboratory & field incubations
•P-E curves; nutrient uptake curves
•elemental stochiometry

Comparative analysis
•allometric relationships

Tuned or optimized against field data
•mismatch between parameters and data
•cross-site comparison

Previous models



Adding Circulation
Control 
volume
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Models have time/space scale limits

Dickey
(2003)

•Computational costs scale as (length)3 to (length)4 and (time)
•Typically get ~2-3 decades in space (more in time)
•Can not resolve all scales; parameterize sub-grid scale

Regional 
Coastal Model

Global 
Climate 
Model



Coupled “Eco-biogeochemical” Elements
Physics (flow field; mixing)

•equations for resolved flow; level of approximation 
(e.g., primative equations; quasi-geostrophy) 
•forcing (winds, heat & freshwater fluxes, light, tides)
•parameterization of unresolved scales (mixing)
•model architecture (e.g., horizontal vs. isopycnal)

Chemistry (CO2, O2, nutrient fields)
•air-sea gas exchange
•elemental stoichiometries
•trace metal deposition and scavenging

Biology
•primary production, respiration, remineralization 
•community structure and succession
•bio-optics
•etc.



-Aggregate into trophic levels/functional groups
-Rates/processes from limited culture/field studies
-Many aspects empirically based
-Data poor for validation (rates, grazing, loss terms)

“State of the Art” Model



-cellular models
•gene expression, metabolism, 
energetics
-population models
•individual based or continuous dist.
•cell-cell interactions (LES & DNS) 
-simulate ecological functions
•“genotype” => “phenotype”
•abandon “boxes”
-ecological/evolutionary rules 
for ecosystem assembly
•maximize resiliance or energy flow
-emergent behavior & selection
•selection and niche adaptation
•Physiological plasticity & constraints
•micro/macroevolution

Multi-scale models



Cell 
Physiology/
Genomics

Diatom Genome
Armbrust et al., 
Science, 2004



Genetics and
physiology

Environment

Competition
Predation
selection

Ecosystem structure 
and function

Competition Based Approach

• Initialize many potentially 
viable functional types of 
phytoplankton

• Assign attributes and 
parameter values from 
prescribed ranges with 
element of chance

• Explicit competition 
selects for fittest 
functional types



How do we avoid the trap of: 
“false models tested by inadequate data”

John Steele

data model model

Ocean ecology and biogeochemistry are 
(still) data-driven sciences



Modern Air-Sea CO2 Flux
Model

Takahashi (2002)

“Looks 
pretty 
good”
test

χ (chi) by eye

Doney et al. Deep-
Sea Res. II 2009

Doney et al. J. 
Mar. Systems 
2009



J. Marine Systems Special Issue on
Skill Assessment for Coupled Biological / 

Physical Models of Marine Systems
Vol. 76, Issue 1-2, 2009



Doney et al. J. Mar. Systems 2009
Stow et al. J. Mar. Systems 2009

Bias

Correlation

rms Error



Taylor 
Diagram

Taylor J. Geophys. 
Res. 2001





Look at the 
magnitude & 
structure in 
model-data 
residuals

Ducklow et al. Ann. 
Rev. Mar. Res. 2009



Doney et al. J. Mar. Systems 2009
Stow et al. J. Mar. Systems 2009

geometric bias
(no bias =>1)

geometric mean

geometric rms error
(~normalized to 
typical data value)

Log-Normal Variables (e.g., chlorophyll)



Stow et al. J. Mar. Systems 2009

average factor 
model differs from 
data

predictions relative 
to observed mean

MEF = 1 great
MEF = 0 no better 
than obs. mean
MEF < 0 worse 
than obs. mean

Reduced Chi 
squared => ~1



Assessing Model Skill

Poor Model Skill

Stow et al. J. Mar. Systems 2009



Good Model Skill

Stow et al. J. Mar. Systems 2009



New Technology & Observational 
Paradigms

Ocean carbonate system determined by temperature, salinity & 2 of 4 
parameters (pH, total carbon, alkalinity, pCO2)
Add sensors to autonomous platforms (AUVs, gliders & floats)

time

space

Local GlobeOcean
Basin

Regional
(500 km)

Centuries

Decadal

Inter-annual

Seasonal

Daily Remote
sensing

Hourly

Process 
Studies

Repeat 
Sections

Surface 
transects
Floats/gliders
AUVs

Ship
Time-
Series

Moored
Time-
Series

Atm. 
CO2
O2/N2



Representativeness of data y0
•“footprint” of observation 
& mismatch with model grid

•local heterogenity or point sources
•aliasing of unresolved frequencies/wavenumbers 
(e.g., diurnal cycle)
•data selection (i.e., exclude “unrepresentative”
observations)

Some Issues to Ponder

R = Rinstrument + Rrepresentativeness

yobs = ytrue + εobs εobs = εrandom + εsystematic

E εobs
1 ,εobs

2[ ]≠ 0



Modeling Methods for Marine Environments
David M. Glover, William J. Jenkins &

Scott C. Doney

(http://eos.whoi.edu/12.747/)

-data analysis
-modeling techniques
-ocean examples and applications
-MATLAB based demos and code
-detailed web notes (and perhaps some day a book)



Matlab Primer
-can run from Matlab command window or “scripts” (m-files)
-use help & lookfor commands
-define variables (case sensitive) & standard functions:

a = 7.3e-7
b = -log10(a)

(follow with “;” if don’t want the answer echoed back)
-vector mathematics 

C=[0:5:100]  =>  C=[0  5  10  15 … 100]
C(4)  =>  15
D = 10*C
E = C.*C (use “.*” for scalar math)

-plotting of 2-D and 3-D graphics
plot(C,D,’-’)



Matlab Primer
-for-loops to cycle over common set of commands

for i=1:n
F(i) = exp(-i*lambda)

end
-call user-written functions or subroutines

C = convert_to_centigrade(F)
-hands-on demonstration (m-files)

-Euler vs. 2nd order Runge Kutta
-”simple” phytoplankton model

-Ordinary Differential Equation (ODEs) integrators 
- find y(t) from y(t0) and equation for dydt=f(y,t,p)
-define “function” to integrate e.g. “dydt” (m-file)
[T,Y] = ode12s(‘dydt’,T,Y0)

CO2 thermodynamics code [pH,pCO2, …]=f(DIC,ALK,T,S…)


