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Talk Outline
*Science Motivation
*Philosophy of Modeling
*Model Construction
Evaluation Against Data
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Ventilation (upwelling) —>»

Anthropogenic CO,
uptake currently controlled
by ocean circulation; but
in future, what will be role
of climate & biology?

For ocean acidification
may want models to
address many different
aspects:

-patterns & trends in
Seawater chemistry

-population biology of
individual species
-food-web & ecological
interactions

-biogeochemical
feedbacks

-socio-economic effects
on fisheries & ecosystem
services
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"I am never content until | have constructed a mechanical
model of the subject | am studying. If | succeed in making
one, | understand; otherwise | do not.”

- Lord Kelvin

"People don't understand the earth, but they want to, so
they build a model, and then they have two things they don't

understand,”
-Gerard Roe in “The Whale and the Supercomputer” by C. Wohlforth

Simple
models




The Interdisciplinary Conundrum
Physics

*(relatively) simple set of (mostly) known governing
equations (Navier-Stokes) => complex phenomenon
‘unresolved scales

Chemistry
*mass balance equations
chemical fields integrate over time/space variability
«don’t uniquely identify process/mechanism

Biology
sinformation as stories and conceptual pictures
historical/evolutionary contingency
*no “biological” Navier-Stokes
*aggregate complicated dynamics across multiple-
scales (genes, cells, populations, ecosystems)




Why do we build/use models?

-Quantitative dynamical framework
*Are different data sets, rate estimates consistent?

-Design of experiments & observing systems
*\WWhat, where and when do we sample?

-Hypothesis testing
*If we add or change X, what happens?

-Forecasting
*\What will the ocean look like at some point in

the future?

-Solving for unknown parameters and rates
*Given things we can measure, can we estimate
can we estimate properties that are difficult to

measure?




Metabolism/Excretion
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What is a model?

-regression curves
variable Y is a function of other variables X and
regression parameters p:
Y=f(variables, parameters)

Chl=p,+ pT

-forward models (often time dependent)
Integrate forward in time to find Y:
dY/dt = circulation + f(variables, parameters, forcing)

d Phyto /dt = circulation + u*Phyto*(1-eEM) -APhyto

-inverse models
Invert the problem to find parameters from data:
Parameters = f(circulation, data, forcing)




What is a model? (continued)

-diagnostic versus prognostic models
In diagnostic models, some variables may be
prescribed based on observations:

e.g., satellite chlorophyll => ecosystem model
(no equation for dChl / dt)

-data assimilation
Combine model equations and observations in a
dynamically consistent fashion
e.g., weather prediction
analysis = f(model forecast, observations)

Prognostic, forward models needed to
project into the future




From Word Problem to Equations

*Phytoplankton levels depends on nutrient inputs
*Perturbations relax back to some stable background level

dP P *Functional form
— =My 1= Logistic model

at -State variable (concentrations)
P (mmol C/m3) phytoplankton
Parameters
Mo(1/d) and C, (mmol C/m?)

C

pP

dP/dt
U >0 net growth P

Cp P \_
0
p
<0 net loss ‘




Simple NPZ Model
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*Three coupled ordinary differential equations
Mass conservation

jZ+ myP+m,Z




Discretization & Numerical Integration

At

Discrete form
Ay = f(1,y)At

numerical method:
Euler's Method

yn+1 :yn + f(fn,yn)At

*Subdivide time into discrete time-steps
*“Integrate” forward using Ay/At approximation
Numerical methods introduce errors




Discretization & Numerical Integration

Runge-Kutta (2" order) A
k= /(" y")Ar L
k,=f(t" +1At " +lk)At 2| i i i
2 Y TN Lo L
AL mf error
yn+1 :yn 4+ k2 j//l : i Tln
‘ij I : I : s
to t1 to t

‘use a “trial step” to find gradient at mid-point
eeven with 2x larger At, more accurate integration




How do you estimate parameters and

functional forms?

Laboratory & field incubations
*P-E curves; nutrient uptake curves
*elemental stochiometry

Comparative analysis
allometric relationships

Tuned or optimized against field data
*mismatch between parameters and data
*Cross-site comparison

Previous models
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Models have time/space scale limits
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«Computational costs scale as (length)3 to (length)* and (time)
*Typically get ~2-3 decades in space (more in time) /
*Can not resolve all scales; parameterize sub-grid scale \
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Coupled "Eco-biogeochemical” Elements
Physics (flow field; mixing)

eequations for resolved flow; level of approximation
(e.g., primative equations; quasi-geostrophy)
forcing (winds, heat & freshwater fluxes, light, tides)
*parameterization of unresolved scales (mixing)
*model architecture (e.g., horizontal vs. isopycnal)

Chemistry (CO,, O,, nutrient fields)
*air-sea gas exchange
~elemental stoichiometries
trace metal deposition and scavenging

Biology
sprimary production, respiration, remineralization
community structure and succession
*bio-optics
*efc.




Size-structured & “State of the Art” Model
functional group

models
/{ Phyto-
HE'I'bWC'fE‘ Higher trophic
levels
Nutrient

Carnivore j
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DOM &
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-Aggregate into trophic levels/functional groups
-Rates/processes from limited culture/field studies
-Many aspects empirically based

-Data poor for validation (rates, grazing, loss terms)

Bacteria




Multi-scale models

-cellular models
*gene expression, metabolism,
energetics

-population models

sindividual based or continuous dist.
«cell-cell interactions (LES & DNS)

-simulate ecological functions
*“genotype” => “phenotype”
«abandon “boxes”
-ecological/evolutionary rules
for ecosystem assembly
*maximize resiliance or energy flow

-emergent behavior & selection ™

*selection and niche adaptation
*Physiological plasticity & constraints
*micro/macroevolution

Cellular gencmic,

metabalic &
energetic models G C]'
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Competition Based Approach

RHHAHAR

Genetics and
physiology

« Initialize many potentially
viable functional types of
phytoplankton

* Assign attributes and
parameter values from
prescribed ranges with
element of chance

« Explicit competition
selects for fittest
functional types
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Ocean ecology and biogeochemistry are
(still) data-driven sciences

How do we avoid the trap of:
“false models tested by inadequate data”

John Steele
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4) AE — the average error (bias)

" Bias
X (P0;)
AE == - = P-0.

1) r — the correlation coefficient of the model predictions and
observations:
Correlation

Hi (0i- ﬁ}zi (PE_F}E.

v i=1 i=1

2) RMSE — the root mean squared error (also referred to as

root mean squared difference):
rms Error

i

Y (P-0;)°

RMSE = \ =1 , Doney et al. J. Mar. Systems 20Q
n Stow et al. J. Mar. Systems 2&6
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Figure 2. Diagram for displaying pattern statistics. The radial distance from the origin is proportional to the
standard deviation of a pattern. The centered RMS difference between the test and reference field is
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BATS CTD Data and 1- D Model BATS CTD Data and 1- D Model
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X

= log(X)

X = \”/fl xi= exp((X))

The geometric bias:
bias(X) = exp((Xp)=(Xo))

FE%0?)

geometric mean (7)

geometric bias
(no bias =>1)

geometric rms error
(~normalized to (9)
typical data value)

Doney et al. J. Mar. Systems 2009
Stow et al. J. Mar. Systems 2&6




3) RI — the reliability index

0 N 2
RI = exp \/%_Zl (lng %) :
1= l

6) MEF — the modeling efficiency

MEF =

(_i (Ua“'ﬁ)g' i_‘; (Pi‘Ui]IE)

E (Ui‘ajl
i—1

MEF = 1-RMSE?/s?

X2 = 1/0%i(Pi-0;)* /€

&O&NOM%%
Stow et al. J. Mar. Systems 200 j‘;\
% I

average factor
model differs from
data

predictions relative
to observed mean

MEF = 1 great
MEF = 0 no better
than obs. mean
MEF < 0 worse
than obs. mean

Reduced Chi
squared => ~1




Assessing Model Skill

Helationships between the truth, model and data
(adapted from the ideas of Dan Lynch)

a)

Predictive* Observational*
Error e Error
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b)

Residual f(O-P)

Ideally model uncertainty;
lies within the range of
observational uncertainty

Observational
error”

Good Model Skill

Prediction error*

Stow et al. J. Mar. Systems 20{3 %"“

Yor s



New Technology & Observational

o Paradigms
. A
Centuries Repeat
Sections
Decadal Ship
Time-| __—
Inter-annual } Series
] transects
Seasonal i Floats/gliders
Daily Process
~Studies
Hourly space
>
Local Regional Ocean Globe

(500 km) Basin

Ocean carbonate system determined by temperature, salinity & 2 of 4
parameters (pH, total carbon, alkalinity, pCO,)
Add sensors to autonomous platforms (AUVs, gliders & floats)
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Some Issues to Ponder

Representativeness of data y,
“footprint” of observation
& mismatch with model grid
local heterogenity or point sources
-aliasing of unresolved frequencies/wavenumbers
(e.g., diurnal cycle)
«data selection (i.e., exclude “unrepresentative”

observations)
R — Rinstrument representativeness
Y obs — Y true + 80bs 80bs ~ Srandom + 8systematic

) [gzbvgozbs] #0




Modeling Methods for Marine Environments

David M. Glover, William J. Jenkins &
Scott C. Doney

-data analysis

-modeling techniques

-ocean examples and applications

-MATLAB based demos and code

-detailed web notes (and perhaps some day a book)

(http://eos.whoi.edu/12.747/)




Matlab Primer

-can run from Matlab command window or “scripts” (m-files)
-use help & lookfor commands
-define variables (case sensitive) & standard functions:
a=7/7.3e-7
= -log10(a)

“, "

(follow with “;” if don’t want the answer echoed back)

-vector mathematics
C=[0:5:100] => C=[0 5 10 15 ... 100]
C4) => 15
D=10"C
E=C.*C (use “.*” for scalar math)

-plotting of 2-D and 3-D graphics
plot(C,D,’-’)




Matlab Primer

-for-loops to cycle over common set of commands
fori=1:n
F(i) = exp(-i*lambda)
end

-call user-written functions or subroutines
C = convert_to_centigrade(F)

-hands-on demonstration (m-files)
-Euler vs. 2" order Runge Kutta
-"simple” phytoplankton model

-Ordinary Differential Equation (ODESs) integrators
- find y(t) from y(t0) and equation for dydt=f(y,t,p)
-define “function” to integrate e.g. “dydt” (m-file)
[T,Y] = ode12s(‘dydt’,T,Y0)

CO, thermodynamics code [pH,pCO2, ...]=f(DIC,ALK,T,S...




