PACE OCI
cloud algorithms

Andrew Sayer
GESTARII-UMBC at NASA GSFC
andrew.sayer@nasa.gov

With thanks to decades of hard work by the MODIS team and others
This lecture

• Why?
• OCI cloud products and processing flow
• Algorithms
 • Cloud mask
 • Cloud top pressure/height
 • Cloud optical properties
... to know where clouds are not

... to understand Earth’s radiation balance and climate

... for forecast and hazard tracking
Clouds don’t all look the same

Geophysical product

<table>
<thead>
<tr>
<th>Geophysical product</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud mask</td>
<td>-</td>
</tr>
<tr>
<td>Cloud optical thickness at mid-visible wavelengths</td>
<td>COT</td>
</tr>
<tr>
<td>Cloud droplet size distribution effective radius</td>
<td>CER</td>
</tr>
<tr>
<td>Cloud top pressure, height, temperature</td>
<td>CTP, CTH, CTT</td>
</tr>
<tr>
<td>Cloud phase</td>
<td>-</td>
</tr>
<tr>
<td>Liquid/ice water path</td>
<td>LWP/IWP (CWP)</td>
</tr>
</tbody>
</table>

- **Where** are the clouds?
- **How strongly** do they scatter and absorb light?
- **How large** are the droplets within the clouds?
- **How high** up are the tops of the cloud?
- Are they made of **liquid** or **ice**?
- **How much water** is in them?
Overall processing flow is MODIS/VIIRS-like

Cloud mask

Cloud altitude & phase

COT, CER, phase

Water path

MODIS/VIIRS heritage

Multispectral grouped threshold tests

Thermal brightness temperatures & meteorological profile

Bispectral retrieval (Nakajima-King) aka CHIMAERA code

One-line calculation (with assumptions on vertical structure)

PACE OCI at-launch approach

Multispectral grouped threshold tests or neural network

O₂ A-band inversion & meteorological profile
Obtain an estimate of whether a pixel is covered by clouds or not

- A *categorical* cloud mask
 - Confidently cloudy
 - Probably cloudy
 - Probably clear
 - Confidently clear

- Further processing for some applications
 - Combine categories to give a *binary* mask
 - Add an *adjacency* barrier
We need statistics of cloudy and cloud-free scenes to inform appropriate thresholds.

• Inputs could be theoretical, from similar sensors and algorithms, or from human-labelled data.

• Overlapping distributions signal ambiguity.

• We use published MODIS thresholds directly.

From MOD35 ATBD [here](#).
Use thresholds as bounds to define a ‘probability of clear sky’ for each test

From MOD35 ATBD [here](#)
Combine result from similar tests to get an overall probability of cloudiness

- **Group I (Simple IR threshold test)**
 - BT_{11}
 - $BT_{13.9}$
 - $BT_{8.7}$
 - Surface Temperature

- **Group II (Brightness temperature difference)**
 - $BT_{8.6} - BT_{11}$
 - $BT_{11} - BT_{12}$
 - $BT_{3.3} - BT_{11}$
 - $BT_{11} - BT_{3.9}$
 - $BT_{8.6} - BT_{3.3}$

- **Group III (Solar reflectance tests)**
 - $R_{0.65}$ or $R_{0.86}$
 - $R_{0.86}/R_{0.65}$

- **Group IV (NIR thin cirrus)**
 - $R_{1.38}$

- **Group V (IR thin cirrus)**
 - $BT_{3.9} - BT_{12}$

- **Determine the lowest probability** of clear-sky conditions from tests in each group
- **Combine** results from multiple groups
- **Q score** determines pixel category

From MOD35 ATBD [here](#)
Lack of thermal bands means majority of MODIS/VIIRS heritage tests are inapplicable

- Determine the lowest probability of clear-sky conditions from tests in each group
- Combine results from multiple groups
- Q score determines pixel category

From MOD35 ATBD [here](#)
Solar-only works quite well over water, less over land.
Obtain an estimate of the altitude of the top of the cloud

- OCI is sensitive to pressure (CTP)
 - Coordinate transform to height (CTH) and temperature (CTT) with meteorological profiles
- New algorithm based on O₂ A-band absorption
OCI samples strong O_2 absorption features

- Combine *window* channels near O_2 absorption band with channels *inside* it
 - O_3 absorption is weak; need to avoid H_2O features
 - Short spectral range means cloud, aerosol, surface properties are fairly flat
The A-band signal is sensitive to COT, surface albedo, and cloud vertical structure

- **Simultaneously** retrieve COT, CTH, and surface albedo
 - Strong albedo prior constraint
- Assume other quantities
 - Cloud vertical structure, aerosol, etc
- Estimate cloud phase by running retrieval for *both liquid and ice* and see what fits best

Aug 3 2022
Sentinel-3 OLCI is a useful OCI proxy for this algorithm

- Similar capabilities within the A-band
- Similar pixel size
- Can evaluate algorithm prior to launch
Cloud optical properties
Obtain estimates of cloud light extinction, cloud droplet particle size, and total amount of water

- Use CHIMAERA code from MODIS/VIIRS group
 - Retrieve COT, CER, and phase estimate
 - Derive LWP/IWP

- Last in processing chain:
 - Needs cloud mask to *identify pixels*
 - Needs CTH for *trace gas correction*
 - Benefits from altitude *phase estimate*

Aug 3 2022 PACE class 2022
The bispectral approach has >30 years heritage

- Bispectral approach (Nakajima-King)
 - 650 or 865 nm where cloud absorption is negligible
 - 1.6, 2.1, or 2.2 μm where cloud absorption is significant
- Assume surface albedo known

From Platnick et al., *IEEE* (2017)
Different swIR bands have different penetration depths

• Photon penetration depth depends on cloud water absorption
• Multiple retrievals inform on cloud *vertical structure*
 • PACE OCI is first time we’ll have 2.1 and 2.2 μm together
 • Won’t have 3.7 μm

From Platnick *JGR* (2000)
Summary

• Cloud remote sensing from passive multispectral imaging has a long history

• PACE OCI will mostly rely on MODIS/VIIRS heritage approach at launch
 • Threshold-based cloud masking
 • Neural network in development as an alternative
 • Cloud top pressure is a new retrieval using absorption in O2 A-band channels
 • Necessary because no thermal infrared bands on OCI
 • Heritage on European sensors and EPIC
 • Running the CHIMAERA code for optical properties

• All processed on single pixels at a time
References and resources

- Satellite imagery (true-colour and level 2) is MODIS and VIIRS on July 21 2022, mostly from https://worldview.earthdata.nasa.gov

- MODIS/VIIRS heritage cloud mask

- CHIMAERA code and related papers

- Cloud top pressure