Validation of OCI aerosol and cloud properties

Andrew Sayer
GESTARRII-UMBC at NASA GSFC
andrew.sayer@nasa.gov
OCI required atmospheres data products and main heritage validation sources

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Range</th>
<th>Uncertainty goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOD at 380 nm</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td>AOD at 440, 500, 550, 675 nm</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td>FMF at 550 nm</td>
<td>0</td>
<td>Max (0.06 or 40%)</td>
</tr>
<tr>
<td>Clouds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud mask</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CTP (for COT>3)</td>
<td>100-1000 mb</td>
<td>60 mb</td>
</tr>
<tr>
<td>CLR</td>
<td>5-100</td>
<td>Liquid: 25%; Ice: 35%</td>
</tr>
<tr>
<td></td>
<td>5-50 μm</td>
<td>Liquid: 25%; Ice: 35%</td>
</tr>
</tbody>
</table>

Sun photometry, e.g. Aerosol Robotic Network (**AERONET**) and Maritime Aerosol Network (**MAN**)
Ground/space lidar, radar, and microwave radiometers
Cloud probes on aircraft

Not an exhaustive list or guaranteed to always be available!
Aerosols
AERONET is the primary validation source for most satellite remote sensing and modeling approaches

- Hundreds of active sites covering a variety of aerosol and surface conditions
- High observation frequency, low latency, long time series
- Freely available data
- Consistent measurement, calibration, and processing protocols
- But:
 - Some sampling gaps
 - Limited densely-sampled (<<100 km spacing areas)

Sites active in 2022, from https://aeronet.gsfc.nasa.gov
Sun photometry provides accurate AOD and more

- **Autonomous operations**
- **Spectral AOD uncertainty 0.01-0.02**
- **Water vapour, derived Ångström exponent & FMF**
- **Sky-scans for additional aerosol properties**

Video by A. Sidel, from https://earth.gsfc.nasa.gov/climate/data/deep-blue/science

UMBC direct-Sun data from https://aeronet.gsfc.nasa.gov
The Maritime Aerosol Network is a ship-based complement to AERONET

- Hand-held instruments operated \textit{manually}
- AOD uncertainty ~0.02
- Sparse but some common \textit{repeat routes}

Photo by B. Howl, from https://earth.gsfc.nasa.gov/climate/data/deep-blue/science

MAN cruises up to present, from https://aeronet.gsfc.nasa.gov
Typically, we spatially average satellite retrievals within ±25 km…
... and temporally average ground observations within ±30 minutes

Eck et al., ACP (2014)

Images used for timing illustration context purposes only; copyrights are owned by their respective owners and no challenge to copyright or trademark are implied.
Simple statistics can give us a basic picture…

- Measures relating to:
 - Degrees of *association* (correlation)
 - *Bias* (mean, median)
 - Error *magnitude* (mean or median absolute error; root mean squared error)
 - Performance *relative to expectation* or *goal* (pixel-level uncertainty, application requirement, etc…)

- Each has *caveats* relevant to interpretation!
 - Data are not independent random draws, skewed distributions, variable errors, etc…
 - Many papers use statistics *inappropriately*, please take care
... but more detailed analysis is warranted, where data volume permits

- Stratified analyses give insights relevant for data users as well as algorithm refinement
- Remember the retrievals we validate are a specific subset of the retrievals we have
 - Can generalise the statistics you get, but only so far
Clouds
Cloud systems can evolve really, really quickly

GOES-14 Super Rapid Scan from https://cimss.ssec.wisc.edu/satellite-blog/archives/13256
Pixel selection for matchups can be difficult

Holz et al., JGR (2008)
The most reliable ground truth for cloud mask comes from active sensors

- Lidar, radar, microwave radiometer…
- Highly sensitive but generally single track or single point
 - Curtain, not swath
- Limited spaceborne options in next few years
 - Several ground sites
 - Airborne data
- Other sensor types and human observers exist

Wang et al., JGR (2016)
Evaluating classifications use different metrics from continuous variables

- Most commonly, with a **confusion matrix**
 - Subset for dependence on e.g., surface type
- Overlap with metrics in e.g. machine learning, medical research disciplines
 - See right-hand side of https://en.wikipedia.org/wiki/Confusion_matrix

<table>
<thead>
<tr>
<th>Truth</th>
<th>Retrieval</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True positive</td>
<td>False positive</td>
<td></td>
</tr>
<tr>
<td>False negative</td>
<td>False negative</td>
<td>True negative</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy = \(\frac{TP + TN}{TP + FP + FN + TN} \)
Many resources to evaluate cloud mask are also useful for cloud altitude.
For cloud validation it can be useful to stratify by number of layers and optical thickness.

Single-layer, COT>3
True validation of COT and CER is difficult

- Limited/no large-scale true reference-quality data
 - Too many assumptions in most cases
 - Can use cloud probes on aircraft flying in spirals but limited scenes
 - Heterogeneity still a problem
 - Measurement uncertainty can be a problem
- Most of what is done is looking at consistency with other satellite products
 - This is not true validation

Painemal & Zuidema, JGR (2011)
Consistency checks are valuable but are not really validation

- How close is close enough?
- How close do we expect them to be?
- Are they consistent because they’re all good or because they’re all bad?
References and resources

- Satellite imagery is MODIS from https://worldview.earthdata.nasa.gov

- Aerosols
 - AERONET and MAN data from https://aeronet.gsfc.nasa.gov
 - Eck, T. F. et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633–11656, https://doi.org/10.5194/acp-14-11633-2014

- Clouds