

Validation of OCI aerosol and cloud properties

Andrew Sayer

GESTARII-UMBC at NASA GSFC

andrew.sayer@nasa.gov

OCI required atmospheres data products and main heritage validation sources

Not an exhaustive list or guaranteed to always be available!

Quantity	Range	Uncertainty goal		available
	Aerosols			
AOD at 380 nm	0-5	Max (0.06 or 40%)		Cup photomotry o a
AOD at 440, 500, 550, 675 nm	0-5	Land: Max (0.06 or 20%) Water: Max (0.04 or 15%)		Sun photometry, e.g. Aerosol Robotic Network (AERONET) and Maritime Aerosol
FMF at 550 nm over water	0-1	0.25	Network (MAN)	
Clouds				Ground/space
Cloud mask	-	-	lidar, radar, and microwave radiometers Cloud probes on aircraft	
CTP (for COT>3)	100-1000 mb	60 mb		radiometers Cloud probes
COT	5-100	Liquid: 25%; Ice: 35%		
CER	5-50 µm	Liquid: 25%; Ice: 35%		
Δμg 5 2022		PACE class 2022		2

Aug 5 2022

PACE class 2022

AERONET is the primary validation source for most satellite remote sensing and modeling approaches

- Hundreds of active sites covering a variety of aerosol and surface conditions
- High observation *frequency*, low *latency*, long *time series*
- Freely available data
- Consistent measurement, calibration, and processing protocols
- But:
 - Some sampling gaps
 - Limited densely-sampled (<<100 km spacing areas)

Sun photometry provides accurate AOD and more

- Autonomous operations
- Spectral AOD uncertainty 0.01-0.02
- Water vapour, derived Ångström exponent & FMF
- Sky-scans for additional aerosol properties

Video by A. Sidel, from https://earth.gsfc.nasa.gov/climate/data/deep-blue/science

UMBC direct-Sun data from https://aeronet.gsfc.nasa.gov

17

Version 3 DS

The Maritime Aerosol Network is a ship-based complement to AERONET

Photo by B. Howl, from https://earth.gsfc.nasa.gov/climate/data/deep-blue/science

MAN cruises up to present, from https://aeronet.gsfc.nasa.gov

- Hand-held instruments operated manually
- AOD uncertainty ~0.02
- Sparse but some common repeat routes

Typically we enatially average catellite retrievale

Turlock

Los Banos

V

Em

Merced

NEON17-SJER NEON-SoaproofSaddle

Madera Fresno Fresno_2 Fresno_X NEON_TEAK

Sterra National Forest

Kings Canyon National Park

Bishop

Big Pin

Independence

Sequoia National Park Three Rivers

ogle Earth

Lemotore Hanford

Hanfford ^OVisalia

Aug 5 2022

PACE class 2022

Tulare

... and temporally average ground observations within ±30 minutes

Images used for timing illustration context purposes only; copyrights are owned by their respective owners and no challenge to copyright or trademark are implied

Simple statistics can give us a basic picture...

- Measures relating to:
 - Degrees of association (correlation)
 - Bias (mean, median)
 - Error *magnitude* (mean or median absolute error; root mean squared error)
 - Performance *relative to expectation* or *goal* (pixel-level uncertainty, application requirement, etc...)
- Each has *caveats* relevant to interpretation!
 - Data are not independent random draws, skewed distributions, variable errors, etc...
 - Many papers use statistics inappropriately, please take care

550 nm AOD, ocean, full retrieval, N20 >1.5 >1000 R=0.864 Bias=0.0180 1.2 RMS=0.0651 n=18543 f=0.671 100 **VIIRS AOD** 0.9 f_G=0.540 0.6 10 0.3 1.2 0.3 0.6 0.9 >1.5 0

AERONET 550 nm AOD

... but more detailed analysis is warranted, where data volume permits

- Stratified analyses give insights relevant for data *users* as well as algorithm *refinement*
- Remember the retrievals we validate are a specific subset of the retrievals we have
 - Can generalise the statistics you get, but only so far

Cloud systems can evolve really, really quickly

GOES-14 Super Rapid Scan from https://cimss.ssec.wisc.edu/satellite-blog/archives/13256

Pixel selection for matchups can be difficult

Holz et al., JGR (2008)

The most reliable ground truth for cloud mask comes from active sensors

- Lidar, radar, microwave radiometer...
- Highly sensitive but generally *single track* or *single point*
 - Curtain, not swath
- Limited spaceborne options in next few years
 - Several ground sites
 - Airborne data
- Other sensor types and human observers exist

Wang et al., JGR (2016)

Evaluating classifications use different metrics from continuous variables

- Most commonly, with a *confusion matrix*
 - Subset for dependence on e.g., surface type
- Overlap with metrics in e.g. machine learning, medical research disciplines
 - See right-hand side of <u>https://en.wikipedia.org/wiki/</u> <u>Confusion matrix</u>

	Truth		
Retrieval	Positive	Negative	
Positive	True positive (TP)	False positive (FP)	
Negative	False negative (FN)	True negative (TN)	

 $Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$

Many resources to evaluate cloud mask are also useful for cloud altitude

Cloud top height validation locations

For cloud validation it can be useful to stratify by number of layers and optical thickness

SGP cloud top height, COD>3: 206 points 18 n=206 $15 R_{p} = 0.88$ R_s=0.83 med bias=0.21 km 12 MODIS CTH, km Single-layer, -mean bias=0.56 km COT>3 s.d.=1.97 km 9 MAE=0.928 km -RMSE=2.04 km 6 $F_{60} = 0.49$ Liquid 3 ce 12 15 3 9 18 0 6 ARM CTH, km

True validation of COT and CER is difficult

- Limited/no large-scale true reference-quality data
 - Too many assumptions in most cases
 - Can use *cloud probes* on aircraft flying in spirals but limited scenes
 - Heterogeneity still a problem
 - Measurement uncertainty can be a problem
- Most of what is done is *looking at* consistency with other satellite products
 - This is not true validation

- How close is close enough?
- How close do we expect them to be?
- Are they consistent because they're *all good* or because they're *all bad*?

PACE class 2022

References and resources

Satellite imagery is MODIS from https://worldview.earthdata.nasa.gov

Aerosols

- AERONET and MAN data from https://aeronet.gsfc.nasa.gov
- Eck, T. F. et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633–11656, <u>https://doi.org/10.5194/acp-14-11633-2014</u>
- Petrenko, M., Ichoku, C., and Leptoukh, G. (2012), Multi-sensor Aerosol Products Sampling System (MAPSS), Atmos. Meas. Tech., 5, 913–926, <u>https://doi.org/10.5194/amt-5-913-2012</u>
- Sayer, A. M. et al. (2018), Validation of SOAR VIIRS over-water aerosol retrievals and context within the global satellite aerosol data record, *Journal of Geophysical Research: Atmospheres*, 123, 13,496–13,526. <u>https://doi.org/10.1029/2018JD029465</u>

Clouds

- Holz, R. E., Ackerman, S. A., Nagle, F. W., Frey, R., Dutcher, S., Kuehn, R. E., Vaughan, M. A., and Baum, B. (2008), Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP, J. Geophys. Res., 113, D00A19, <u>https://doi10.1029/2008JD009837</u>
- Noble, S. R., and Hudson, J. G. (2015), MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics, *J. Geophys. Res. Atmos.*, 120, 8332–8344, <u>https://doi.org/10.1002/2014JD022785</u>
- Painemal, D., and Zuidema, P. (2011), Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements, *J. Geophys. Res.*, 116, D24206, <u>https://doi.org/10.1029/2011JD016155</u>
- Wang, T., Fetzer, E. J., Wong, S., Kahn, B. H., and Yue, Q. (2016), Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications, *J. Geophys. Res. Atmos.*, 121, 11,620–11,635, <u>https://doi.org/10.1002/2016JD025239</u>