PACE R_{rs} Uncertainty

Amir Ibrahim
Sources of uncertainties in ocean color

- Radiometric uncertainty
 - Random noise \rightarrow SNR.
 - Systematic uncertainty (calibration errors).
- Non-radiometric
 - Geolocation accuracy
 - Band-to-band registration
- Modeling uncertainty
 - Radiative transfer errors.
 - Simplification of physics.

Pre-launch and on-orbit calibration

IOCCG, report 18
20+ years of diagnostic uncertainty estimates in ocean color

- Pixel-level uncertainty has been absent from the ocean color community for decades.
- The community relies on the validation data to provide diagnostic estimates of uncertainty.
- Validation data is not representative of the global oceans.
- Uncertainty varies spatially and temporal (season).

PACE SDT Goal for R_{rs}(VIS)

ΔR_{rs}(VIS) = 3e-4 sr$^{-1}$ or 5%

Current Approach

ΔR_{rs}(VIS) \sim 1e-3 sr$^{-1}$ or 12% (22% 412)

goal is factor of 3 reduction ... seems achievable!
Toward pixel-level uncertainty in operational products

There are various methods to estimate the pixel-level uncertainty:

- Monte Carlo sampling
- Analytical error propagation
- Bayesian Framework (Optimal Estimation)
- Machine learning (ensemble approach)
- Cramér-Rao Bounds
- ...

\[y = f(x_1, x_1, \ldots, x_n) \]

\[
u^2(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right)^2 u^2(x_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)\]
Pixel-level uncertainty in SeaDAS

\[L_t(\lambda) = (L_r(\lambda) + L_a(\lambda) + L_{ra}(\lambda) + t(\lambda)L_f(\lambda) + T(\lambda)L_g(\lambda) + t(\lambda)L_w(\lambda)) \times T_g(\lambda) \]
Pixel-level uncertainty of OCI

One goal is to retrieve $R_{rs_unc_440} < 0.00076 \text{ sr}^{-1}$

R_{rs_440} includes random noise + systematic unc. + forward model unc.

$R_{rs_unc_440}$ includes random noise + systematic unc. + forward model unc.
Pre-launch instrument uncertainty model tells us how well we will do for PACE

<table>
<thead>
<tr>
<th>Data Product</th>
<th>Baseline Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-leaving reflectances centered on (±2.5 nm) 350, 360, and 385 nm (15 nm bandwidth)</td>
<td>0.0057 or 20%</td>
</tr>
<tr>
<td>Water-leaving reflectances centered on (±2.5 nm) 412, 425, 443, 460, 475, 490, 510, 532, 555, and 583 (15 nm bandwidth)</td>
<td>0.0020 or 5%</td>
</tr>
<tr>
<td>Water-leaving reflectances centered on (±2.5 nm) 617, 640, 655, 665 678, and 710 (15 nm bandwidth, except for 10 nm bandwidth for 665 and 678 nm)</td>
<td>0.0007 or 10%</td>
</tr>
</tbody>
</table>

- Remember there are requirements that we need to meet for the water reflectance.
- Remember that we can use our global PyTOAST simulations to test these requirements

Uncertainty in ocean reflectance after the Atmospheric Correction
Are we going to produce operational uncertainty products? yes

- We will be able to produce Rrs and IOPs uncertainty for L2 products from PACE and other heritage sensors.

8-day L2 binned data. This is not L3 uncertainty product.

Zhang et al (2022) in press
Validating the pixel-level uncertainty

\[\Delta_N = \frac{R_{rs}^m - R_{rs}^f}{\Delta_D} \]

Zhang et al (2022) in press
• Developed a Bayesian version of the full-spectrum AC (combined with the GIOP forward ocean model).

 • Define the state vector:
 \[\mathbf{x} = [RH, O_3, Pr, WS, WV, fmf, \tau_a, a_{ph}, a_{dg}, b_{bp}] \]

 • Define the objective function:
 \[\chi^2 = [\mathbf{\rho}_{obs} - \mathbf{F}(\mathbf{x})]^T \mathbf{S}_e^{-1} [\mathbf{\rho}_{obs} - \mathbf{F}(\mathbf{x})] + [\mathbf{x} - \mathbf{x}_a]^T \mathbf{S}_a^{-1} [\mathbf{x} - \mathbf{x}_a] \]

 • Optimize the objective function given the forward model to estimate the state vector.
 \[\rho_{TOA}(\lambda, \theta_0, \varphi, \theta_v) = \mathbf{F}(RH, O_3, Pr, WS, WV, fmf, \tau_a, a_{ph}, a_{dg}, b_{bp}, \gamma, Chl - a) \]

 • Estimate the error covariance matrix:
 \[\mathbf{\hat{S}} = (\mathbf{\hat{R}}^T \mathbf{S}_e^{-1} \mathbf{\hat{K}} + \mathbf{S}_a^{-1})^{-1} \]

 \(\mathbf{S}_e \) is the error covariance matrix from measurements (random + correlated)

 \(\mathbf{S}_a \) is the error covariance matrix of the prior

 \(\mathbf{\hat{K}} \) is the Jacobian matrix

Ibrahim et al. (2022)
Another type of algorithm to estimate the uncertainty
Bayesian OE algorithm test on real data (MODIS Aqua)

\[R_{rs}(443) \text{ (OE)} \]
\[76.5^\circ W 75^\circ W 73.5^\circ W 72^\circ W 70.5^\circ W 69^\circ W \]

\[R_{rs}(443) \text{ (Oper.)} \]
\[76.5^\circ W 75^\circ W 73.5^\circ W 72^\circ W 70.5^\circ W 69^\circ W \]

\[\text{Chl-a} = 0.11 \text{ mg m}^{-3}, \chi^2 = 0.60 \]

\[\text{Chl-a} = 0.20 \text{ mg m}^{-3}, \chi^2 = 0.65 \]

Ibrahim et al (2022)
Validating pixel-level uncertainty for the Bayesian algorithm

Fig. 7. Top row is a histogram of the difference between the retrieved and in-situ R_n at 443, 555, and 667 nm, respectively, for the OE algorithm in red, and the operational algorithm in black. The bottom row is the CDF of the absolute normalized error Δ_N for R_n at the same three bands, where the red curve is estimated from the OE algorithm, and the black curve is the ideal case for a standard normal.
Questions?