

#### PACE R<sub>rs</sub> Uncertainty

Amir Ibrahim

# Sources of uncertainties in ocean color signal at sensor

Pre-launch

calibration

and on-orbit

- ➢ Radiometric uncertainty
  ➢ Random noise → SNR.
  ➢ Systematic uncertainty (calibration errors).
  ➢ Non-radiometric
  ➢ Geolocation accuracy
  ➢ Band-to-band registration
  ➢ Modeling uncertainty
  - Radiative transfer errors.
  - Simplification of physics.



# 20+ years of diagnostic uncertainty estimates in ocean color

- Pixel-level uncertainty has been absent from the ocean color community for decades.
- The community relies on the validation data to provide diagnostic estimates of uncertainty.
- Validation data is not representative of the global oceans.
- Uncertainty varies spatially and temporal (season).

| Product<br>Name | MODIS Aqua Range  | In situ Range    | #    | Best Fit<br>Slope | Best Fit<br>Intercept | R <sup>2</sup> | Median Ratio | Abs %<br>Difference | RMSE    |
|-----------------|-------------------|------------------|------|-------------------|-----------------------|----------------|--------------|---------------------|---------|
| Rrs412          | -0.00411, 0.01820 | 0.00000, 0.01964 | 1945 | 1.03539           | -0.00065              | 0.90481        | 0.90307      | 22.21457            | 0.00147 |
| Rrs443          | -0.00065, 0.01950 | 0.00005, 0.01783 | 1774 | 1.04628           | -0.00026              | 0.88967        | 1.00894      | 12.06771            | 0.00109 |
| Rrs488          | 0.00033, 0.02513  | 0.00039, 0.02289 | 2127 | 0.94853           | -0.00021              | 0.89894        | 0.91509      | 12.0052             | 0.00106 |
| Rrs531          | 0.00092, 0.01682  | 0.00130, 0.02110 | 639  | 0.87525           | 0.00017               | 0.91346        | 0.97562      | 11.98040            | 0.00096 |
| Rrs547          | 0.00088, 0.01590  | 0.00091, 0.01984 | 469  | 0.91611           | 0.00018               | 0.92442        | 1.04480      | 13.38668            | 0.00072 |
| Rrs667          | -0.00016, 0.01186 | 0.00002, 0.01100 | 709  | 0.98687           | -0.00002              | 0.91982        | 0.94565      | 37.48856            | 0.00017 |
| Rrs678          | -0.00015, 0.00283 | 0.00004, 0.00295 | 373  | 0.94854           | -0.00000              | 0.89380        | 1.00161      | 32.16394            | 0.00008 |

```
The linear regression algorithm has been changed to reduced major axis.
```

PACE SDT Goal for Rrs(VIS)  $\Delta R_{rs}(VIS) = 3e-4 \text{ sr}^{-1} \text{ or } 5\%$ 

Current Approach  $\Delta R_{rs}$ (VIS) ~ 1e-3 sr<sup>-1</sup> or 12% (22% 412)

goal is factor of 3 reduction ... seems achievable!

# Toward pixel-level uncertainty in operational products

>There are various methods to estimate the pixel-level uncertainty:

Monte Carlo sampling

Analytical error propagation
 Bayesian Framework (Optimal Estimation)
 Machine learning (ensemble approach)
 Cramér-Rao Bounds

≻...

$$y = f(x_1, x_1, ..., x_n)$$

$$u^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{i})$$



#### **Pixel-level uncertainty in SeaDAS**







Atm

1615

2130

Atm/Ocean Atm/Ocean Atm/Ocean

2260

### Pre-launch instrument uncertainty model tells us how well we will do for PACE

| Data Product                                                                                                                                      | Baseline Uncertainty |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Water-leaving reflectances centered on (±2.5 nm)<br>350, 360, and 385 nm (15 nm bandwidth)                                                        | 0.0057 or 20%        |  |
| Water-leaving reflectances centered on (±2.5 nm) 412, 425, 443, 460, 475, 490, 510, 532, 555, and 583 (15 nm bandwidth)                           | 0.0020 or 5%         |  |
| Water-leaving reflectances centered on (±2.5 nm) 617, 640, 655, 665 678, and 710 (15 nm bandwidth, except for 10 nm bandwidth for 665 and 678 nm) | 0.0007 or 10%        |  |



Uncertainty in ocean reflectance after the Atmospheric Correction

- $\checkmark$  Remember there are requirements that we need to meet for the water reflectance.
- ✓ Remember that we can use our global PyTOAST simulations to test these requirments

# Are we going to produce operational uncertainty products? yes

• We will be able to produce Rrs and IOPs uncertainty for L2 products from PACE and other heritage sensors.



|                                     | 0    | 3     | $u_{c}(R_{rs})(10^{-4}sr^{-1})$ | 9    | 12 |
|-------------------------------------|------|-------|---------------------------------|------|----|
| 8-day L2 binned data.               | 0    | 5     | δ(%)                            | 15   | 2  |
| This is not L3 uncertainty product. | 0.01 | 0.067 | chl-a(mg/m³)                    | 2.99 | 2  |

Zhang et al (2022) in press

#### Validating the pixel-level uncertainty





#### **Probabilistic/Bayesian Optimal Estimation Framework**



 $\widehat{\mathbf{K}}$  is the Jacobian matrix

Ibrahim et al. (2022)

#### Another type of algorithm to estimate the uncertainty Bayesian OE algorithm test on real data (MODIS Aqua)



Ibrahim et al (2022)

### Validating pixel-level uncertainty for the Bayesian algorithm



**Fig. 7.** Top row is a histogram of the difference between the retrieved and in-situ  $R_{rs}$  at 443, 555, and 667 nm, respectively, for the OE algorithm in red, and the operational algorithm in black. The bottom row is the CDF of the absolute normalized error  $\Delta_N$  for  $R_{rs}$  at the same three bands, where the red curve is estimated from the OE algorithm, and the black curve is the ideal case for a standard normal.

Ibrahim et al (2022)

#### **Questions?**