Why don't *all* ocean color satellites measure hyperspectral radiances at meter-scales?

Jeremy Werdell

Acknowledgements: Gary Davis, Bryan Monosmith, & **Curt Mobley**

PACE class @ UMBC 1-5 Aug 2022

why include this talk?

my prediction is that >50% of you will someday:

- 1. use satellite data for your research & wish to understand engineering design choices
- serve as members of space agency Science Definition Teams (or equivalent, e.g., 2017 Decadal Survey "designated observable" teams)
- 3. serve on satellite mission review boards or proposal panels
- 4. write proposals for new missions

satellite instruments come in all shapes and sizes and have varying capabilities

how does one choose what to use / build?

how would you design a mission to monitor coastal harmful algal blooms & their interactions with the atmosphere under pervasive absorbing aerosols? What measurements & data products? All of them.

What instruments? Active? Passive? Both.

Spectral – what wavelengths? Thermal?

Yes please! UV-to-SWIR plus thermal.

Spectral – what resolution? Hyperspectral, of course.

What spatial footprint? The smaller the better. 10 m!

What repeatability?

Daily global, duh. Phytos are transient.

What allowable image quality?

High SNRs, no image artifacts.

What temporal stability?

Change is bad.

You can't have this mission (from orbit alone anyway).

You have neither the budget nor the technology.

And certain aspects of the design are in conflict with each other.

So ... we make compromises based on overarching science objectives.

pushbroom vs. whiskbroom (scanner)

HICO Landsat 8 OLI MERIS OLCI SeaWiFS MODIS VIIRS PACE OCI

An Introduction to Ocean Remote Sensing Seelye Martin

GEO (geostationary) vs. LEO (polar, low earth orbit)

GEO (geostationary) vs. LEO (polar, low earth orbit)

GEO (geostationary) vs. LEO (polar, low earth orbit) 35,786 km altitude

different instruments & missions offer different capabilities

current & future missions – it's a consumer's market

SENSOR / DATA LINK	AGENCY	SATELLITE	LAUNCH DATE	SWATH (KM)	SPATIAL RESOLUTION (M)	BANDS	SPECTRAL COVERAGE (NM)	SPECTRAL RESPONSE FUNCTION	EQUATORIAL CROSSING TIME	ELI	LITE	LITE AGENCY	SENSOR / LITE AGENCY DATA LINK	LITE AGENCY SENSOR / LAUNCH DATA DATE LINK DATE	LITE AGENCY SENSOR / LAUNCH SWATH LINK DATE (KM)	LITE AGENCY SENSOR / LAUNCH SWATH SPATIAL DATA DATE (KM) (M)	LITE AGENCY SENSOR / LAUNCH SWATH RESOLUTION # OF BANDS LINK DATE (KM) (M)	LITE AGENCY SENSOR / LAUNCH DATA DATE SWATH RESOLUTION # OF BANDS COVERAGE (M)				
COCTS CZI	NSOAS/CAST (China)	HY-1D	11 June 2020	3000 950	1100 50	10 4	402 - 12,500 433 - 885		13:30	1E/F na)		CNSA (China)	CNSA CZI (China)	CNSA CZI 2021 (China)	CNSA CZI 2021 2900 (China) 1000	CNSA CZI 2021 2900 1100 (China) 1000 250	CNSA CZI 2021 2900 1100 10 (China) 1000 250 4	CNSA CZI 2021 2900 1100 10 402 - (China) 1000 250 4 12,500 433 - 885				
COCTS CZI	NSOAS/CAST (China)	HY-1C	7 September 2018	3000 950	1100 50	10 4	402 - 12,500 433 - 885		10:30	ИАР		DLR (Germany)	DLR HSI (Germany)	DLR HSI 2021-2022 (Germany)	DLR HSI 2021-2022 30 (Germany)	DLR HSI 2021-2022 30 30 (Germany)	DLR HSI 2021-2022 30 30 242 (Germany)	DLR HSI 2021-2022 30 30 242 420 - 2450 (Germany)				
OCI-II eostationary	KARI/KIOST (South Korea)	GeoKompsat- 2B	18 February 2020	2500 x 2500	250	13	380 - 900	SRF-link	10 times/day	ANSAT-		ISRO (India)	ISRO OCM-3 (India)	ISRO OCM-3 end-2021 (India)	ISRO OCM-3 end-2021 1400 (India)	ISRO OCM-3 end-2021 1400 360 / 1 (India)	ISRO OCM-3 end-2021 1400 360 / 1 13 (India)	ISRO OCM-3 end-2021 1400 360 / 1 13 400 - 1,010 (India)				
/IODIS-Aqua	NASA (USA)	Aqua (EOS-PM1)	4 May 2002	2330	250/500/1000	36	405-14,385	SRF-link	13:30	IA-MAR	CON	IAE	IAE Multi- spectral Optical Camera	IAE Multi- 2023 spectral Optical Camera	IAE Multi- 2023 200/2200 spectral Optical Camera	IAE Multi- 2023 200/2200 200/1100 spectral Optical	IAE Multi- 2023 200/2200 200/1100 16 spectral Optical	IAE Multi- 2023 200/2200 200/1100 16 380 - spectral 0 Optical compare				
ODIS-Terra	NASA (USA)	Terra (EOS-AM1)	18 Dec 1999	2330	250/500/1000	36	405-14,385	SRF-link	10:30	E	NASA		OCI	OCI 2023	OCI 2023 2000	OCI 2023 2000 1000	OCI 2023 2000 1000 Hyperspec (5 nm,	OCI 2023 2000 1000 Hyperspec (5 nm, 350-2250				
51	ESA	Sentinel-2A	23 June 2015	290	10/20/60	13	442-2202	SRF-link	10:30				CDEV				350-890nm + 7 bands NIR-SWIR)	350-890nm + 7 bands nm NIR-SWIR)				
	ESA	Sentinel-2B	7 March 2017	290	10/20/60	13	442-2186	SRF-link	10:30			SI	PEXone	PEXone IARP-2	PEXone 100 IARP-2 1550	PEXone 100 2500 IARP-2 1550 3000	PEXone 100 2500 Hyperspec (2 nm) IARP-2 1550 3000 4 bands	PEXone 100 2500 Hyperspec (2 nm) 385-770 IARP-2 1550 3000 4 bands nm				
CM-2	ISRO (India)	Oceansat-2 (India)	23 Sept 2009	1420	360/4000	8	400 - 900		12:00						CONTRACTOR CONTRA	STARS - Spents Spents Spents	440-870 nm					
LCI	ESA/ EUMETSAT	Sentinel 3A	16 Feb 2016	1270	300/1200	21	400 - 1020	SRF-link	10:00	AT-1	ISRO (India)	MX-VN HyS-VN		IR 12 August VIR 2021	IR 12 August 470 IR 2021 160	R 12 August 470 42 NR 2021 160 320	IR 12 August 470 42 6 IR 2021 160 320 158 100 101 256	IR 12 August 470 42 6 450-875 NR 2021 160 320 158 375-1000 100 101 256 000-3500 375-1000				
OLCI	ESA/ EUMETSAT	Sentinel 3B	25 April 2018	1270	300/1200	21	400 - 1020	SRF-link	10:00	SBG NASA	Hys-SWIR		2026	190	190 191	190 191 256	190 191 256 900-2500					
SGLI	JAXA (Japan)	GCOM-C	23 Dec 2017	1150 - 1400	250/1000	19	375 - 12,500	SRF-link	10:30		NASA *Hype VSWIF *TIR- Image	NASA *Hyper- VSWIR *TIR- Imager	*Hyper- VSWIR *TIR- Imager	*Hyper- 2026 VSWIR *TIR- Imager	*Hyper- 2026 VSWIR *TIR- Imager	*Hyper- 2026 VSWIR *TIR- Imager	*Hyper- 2026 VSWIR *TIR- Imager	*Hyper- 2026 VSWIR *TIR- Imager	r- 2026	~600	-600 60-100	-600 60-100 -8
VIIRS	NOAA (USA)	Suomi NPP	28 Oct 2011	3000	375 / 750	22	402 - 11,800	SRF-link	13:30	MR	NASA	*VNIR-		>2023	>2023 TBD	>2023 TBD 300	>2023 TBD 300 141	>2023 TBD 300 141 340-1040				
VIIRS	NOAA/NASA (USA)	JPSS-1/NOAA- 20	18 Nov 2017	3000	370 / 740	22	402 - 11,800	SRF-link	13:30			imager *WFOV- sensor	-		133	133	133					

How to choose?

Plankton, Aerosol, Cloud, ocean Ecosystem

Extend key systematic **ocean** biological, ecological, & biogeochemical climate data records, as well as **cloud** & **aerosol climate data records**

GSD of $1 \pm 0.1 \text{ km}^2$ at nadir

Twice-monthly lunar calibration & onboard solar calibration (daily, monthly, dim)

Make **new global measurements of ocean color** that are essential for understanding the global carbon cycle & ocean ecosystem responses to a changing climate

Spectral range from 350-865 @ 5 nm

Collect **global observations of aerosol & cloud properties**, focusing on reducing the largest uncertainties in climate & radiative forcing models of the Earth system

940, 1038, 1250, 1378, 1615, 2130, 2260 nm

Instrument performance requirements

Spectral range goal of 320-865 @ 5 nm

Improve our understanding of how aerosols influence ocean ecosystems & biogeochemical cycles and how ocean biological & photochemical processes affect the atmosphere

- hyperspectral scanning radiometer
- (320) 340 890 nm, 5 nm resolution, 2.5 nm steps⁺
- plus, 940, 1038, 1250, 1378, 1615, 2130, and 2250 nm
- single science pixel to mitigate image striping
- 1 2 day global coverage
- ground pixel size of 1 km² at nadir
- ± 20° fore/aft tilt to avoid Sun glint
- twice monthly lunar calibration
- daily on-board solar calibration
- <0.5% total system error for VIS-NIR
- SNRs optimized for ocean color science
- simulated top-of-atmosphere data available

+ with 1.25 nm steps in several spectral regions* developed primarily for mechanical processing assessments

Challenges

Atmospheric correction (L10) Sun glint Image artifacts Spatial resolution Conscientious use of the data

PAR = Photosynthetically Available Radiation (Einstein m⁻² d⁻¹)

image artifacts & instrument design

Hu et al.

often

Figure 4.5: Subplots (A) and (B) show simulated pushbroom images of $\rho_w(440)$ for a uniform ocean: (A) is modeled with 0.1% miscalibration error, and (B) is modeled with 0.1% miscalibration error in the presence of noise. Subplots (C) and (D) show variability in $\rho_w(440)$ along a cross-track transect for scan number 100 (denoted as redlines in subplots (A) and (B)). Subplots (E) and (F) show the true $\rho_w(\lambda)$ and the transect-averaged spectral mean absolute percent differences (MAPD).

moving from multi-spectral radiometry to spectroscopy

1 mm Joaquim Goes, LDEO signals from the ocean are small & differentiating between constituents requires additional information relative to what we have today

Landsat OLI image with MODIS-Aqua grid shown (Franz et al. 2015)

- horizontal resolution
- temporal resolution
- vertical resolution

- horizontal resolution
- temporal resolution
- vertical resolution

- horizontal resolution
- temporal resolution
- vertical resolution

- horizontal resolution
- temporal resolution
- vertical resolution

- horizontal resolution
- temporal resolution
- vertical resolution

Chasing photons – considerations for making & maintaining useful satellite ocean color measurements

Alternative title: the trade space within which you will work when creating an instrument design concept

Why don't all ocean color satellites measure hyperspectral radiances at meter-scales?

3 case studies:

- (1) stationary satellite staring at 1 m^2 for 1 s
- (2) moving satellite staring at 1 m²
- (3) moving satellite scanning side to side

What we will (hopefully) learn:

- how many photons leave a 1 m² of ocean surface
- how many photons from this patch reach the satellite detector
- ow many photons must the detector collect to achieve useful SNR

consider a satellite instrument with the following characteristics

Optical efficiency (OE)	= 0.66	
Quantum efficiency (QE)	= 0.9	solid angle of aperture
View angle	= 20 deg	(sensor) as seen from
Aperture	= 0.009 m (90 mm)	earth's surface = 1.3 e ⁻¹⁴ sr
Altitude	= 650,000 m (650 km)	a_{round} value $i_{ru} = 6020 \text{ m} \text{ s}^{-1}$
Slant Range	= 700,000 m (700 km)	$ground velocity = 6838 \text{ m s}^{+}$

let's focus on a fluorescence channel:

Wavelength Bandwidth (Δλ) Typical TOA radiance Desired SNR = 0.678 um (678 nm) = 0.01 um (10 nm) = 14.5 W m⁻² um⁻¹ sr⁻¹ = 2000

$$SNR = \frac{N_{electrons}}{\sqrt{N_{electrons}}}$$
(oversimplification; assumes no dark current or noise)

consider a stationary satellite taking a quick peek at Earth

power reaching detector for 1 m^2 areal footprint & 1 s integration time:

P _{detector}	=	L	$\Omega_{aperature}$	<i>Area_{surface}</i>	OE	$\Delta\lambda$
1.24e ⁻¹⁵	=	14.5	1.3e ⁻¹⁴	1	0.66	0.01
W	=	W m ⁻² sr ⁻¹ um ⁻	¹ sr	m ²	(none)	um

photoelectrons reaching detector:

This is for top-of-atmosphere.

If we consider that the ocean contributes ~5% of this signal, then the number of photoelectrons from the ocean surface reaching the detector is ~190.

consider a moving satellite that stares at 1 m² at nadir

ground velocity = distance / time 6838 m s^{-1} = 1 m / t integration time = 0.000146 s

repeat calculations with new integration time:

photoelectrons from ocean surface reaching detector = 0.028

repeat calculations with new area and integration time:

photoelectrons from ocean surface reaching detector ~ 28,000,000

major reason why pushbroom instruments are attractive ... SNR ~ 2900 for a 250 m pixel

consider a moving satellite that scans from side-to-side

instantaneous field of view (IFOV) = pixel size / altitude 0.0014 rad = 1 km / 700 km

a swath width of ~2 rad translates to ~1,400 pixels: = swath width / IFOV 1,400 = 2 rad / 0.0014 rad

dividing the 28M photoelectrons by 1,400 pixels leaves ~19,900 photoelectrons from the ocean surface reaching the detector

useful duty cycle of of scan mirror is < 1/3, so really, we're talking about ~6,000 ocean surface photons

propagate this to TOA results in ~120,000 photons reach detector

SNR =~ 346

consider a moving satellite that scans from side-to-side

Pre-Aerosol, Clouds, and ocean

Requires >16x photons reaching the detector <section-header>

October 16, 2012

useful duty cycle of of scan mirror is < 1/3, so really, we're talking about ~6,000 ocean surface photons

propagate this to TOA results in ~120,000 photons reach detector

λ	Band Width (nm)	Spatial Resol. (km ²)	L _{typ}	L _{max}	SNR- Spec
350	15	1	7.46	35.6	300
360	15	1	7.22	37.6	1000
385	15	1	6.11	38.1	1000
412	15	1	7.86	60.2	1000
425	15	1	6.95	58.5	1000
443	15	1	7.02	66.4	1000
460	15	1	6.83	72.4	1000
475	15	1	6.19	72.2	1000
490	15	1	5.31	68.6	1000
510	15	1	4.58	66.3	1000
532	15	1	3.92	65.1	1000
555	15	1	3.39	64.3	1000
583	15	1	2.81	62.4	1000
617	15	1	2.19	58.2	1000
640	10	1	1.90	56.4	1000
655	15	1	1.67	53.5	1000
665	10	1	1.60	53.6	1000
678	10	4	1.45	51.9	2000
710	15	1	1 19	48.9	1000
748	10	1	0.93	44.7	600
820	15	1	0.59	39.3	600
865	40	1	0.45	33.3	600
1240	20	1	0.088	15.8	250
1640	40	1	0.029	8.2	180
2130	50	1	0.008	2.2	15

SNR =~ 346

NEVER STOP TRYING TO EXCEED YOUR LIMITS. WE NEED THE ENTERTAINMENT.