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Basic ldea:

« Add finely ground (40-um radius) limestone powder to
regions of the ocean where the boundary between
saturated (upper) and unsaturated (lower) water wrt
calcite is relatively shallow (250-500 m depth) and the
upwelling velocity relatively large (50-100 m/year)

* The limestone powder will dissolve within the first few
hundred meters of the saturation boundary, restoring
CO;%, increasing the pH, and reducing pCO,

* When this water upwells to the surface, additional CO,
will be absorbed from the atmosphere, pushing pH back
down, thereby offsetting some of the beneficial increase
in pH



In the analysis to follow, | use the 7-component
carbonate chemistry algorithm of Peng et al.
(1987), and use global datasets on a 1° x 1°

latitude-longitude grid and at 33 depths for total

dissolved inorganic carbon (TDIC), total alkalinity
(TALK), dissolved phosphate, temperature, salinity,
and upwelling velocity
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The analysis to follow consists of 3 phases

« Simulation of the dissolution of falling CaCQO; particles in
a single column, calculation of the impact on mixed layer
pCO, when the carbonate-enriched water upwells to the
surface, and calculation of the amount of atmospheric
CO, that would need to be absorbed in order to restore
the original mixed layer pCO,

« Analysis of the effect of feedback between atmospheric
and mixed layer pCO,

« Simulations with a global-scale coupled climate-carbon
cycle model



Simulations with 5 Representative
Columns



The reaction when CaCO; dissolves is
CaCO; — Ca’ +CO;5” (1)

This induces the following reactions:

CO,” + H* — HCO,~ (2)
H,CO,(aq) — H* + HCO, (3)
CO, + H,O0 —» H,CO,(aq) 4)

If reactions 2-4 are fully carried out, the net result 1s
CaCO; + CO, + H,0 — Ca*" + 2HCOy (5)

That is: one mole of CO, absorbed for every mole of CaCO;
dissolved, and no net effect on acidity.



In reality, less than one mole of CO, is absorbed from the
atmosphere for every mole of dissolved CaCO; entering the
mixed layer, and there 1s a net reduction in acidity.

Why?

Because only as much CO, will enter the mixed layer from
the atmosphere as i1s required to restore the imitial pCO,
difference between the mixed layer and atmosphere.



For fixed atmospheric pCO,, the following applies after
adjustment of mixed layer pCO, to the dissolution of CaCOs:

arpic. PC9%  arpic 9PC0:
OTDIC ? dTDIC

Thus, the molar ratio My 1s given by

v AIDIC, _ dpCO,/dTDIC
* ATDIC,  @pCO,/dTDIC
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Initial Profiles for 5 Representative Columns
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Table 3. Steady state impact on mixed layer properties of applying 200 gm/m*/yr of CaCO; (assumed to
be calcite) at 40 um radius with Cy;= 107"° my/s/ umole/kg.

Changes prior to absorption

of atmospheric CO, Equilibrium | Moles CO, Fraction of Mass of CO,

(changes in TALK are adjustment absorbed added CaCO; | absorbed over

Column twice those of TDIC) of TDIC over moles | inthe mixed | mass of CaCO;

TDIC pCO, (umole/kg) | CaCO; added layer (F) added (R)
(umole/kg) (natm)
1 39.8 -40.5 28.9 0.727 0.943 0.302
2 37.6 -27.5 26.2 0.696 0.501 0.153
3 44 .4 -48.7 31.7 0.714 0.587 0.184
4 33.4 -26.7 20.5 0.613 0.522 0.141
5 8.5 -10.3 5.2 0.615 0.052 0.014
Changes in pH Changes in Supersaturation

Initial Adjustment Final Initial Adjustment Final
1 0.073 -0.059 0.014 55% -36% 19%
2 0.063 -0.050 0.013 63% -34% 20%
3 0.078 -0.063 0.015 62% -41% 22%
4 0.044 -0.033 0.011 51% -28% 23%
5 0.012 -0.009 0.003 13% -7% 6%
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Simulations with all 3713 1° x 1°
columns having an upwelling time
of 100 years of less



Rate of absorption of CO, for one uniform rate of application of limestone powder,
showing contributions from groups of columns with different upwelling times
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The effectiveness of adding limestone
powder in terms of absorbing atmospheric
CO, decreases with increasing rate of
application, varies between columns in
different upwelling bins, and varies over time
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Effectiveness (Mass CO,/Mass CaCO,)
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Optimization Strategy:

« Compute the marginal effectiveness of adding
limestone powder in each of 3713 columns for
successively greater rates of limestone addition

o Sort all of the column/limestone-increment
combinations in order of decreasing
effectiveness

* Prepare a plot of rate of absorption of CO, vs
total rate of addition of limestone, as the rate of
addition of limestone is increased according to
the order established in step (2).
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Global-scale Interactions



Atmosphere

@ CO, flow ﬁ CO, flow

ML Domain 1
(receives CaCO,)

ML Domain 2

Initial (pCO,).,, (PCOL )L
 (ApCOy),

»d
»

(ApCOy),
(ApCO,),




Balance Equations:

Domain 1 pCO,

A(pCO,), — (ApCO,), + (ApCO,), =0
Domain 2 pCO,

A(pCO,), —(ApCO,), =0

Conservation of mass

AC, +AC, +AC, =0
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Simulations with a coupled climate-
carbon cycle model
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Scenarios and Assumptions

» Scenario 1: Fossil fuel CO, emission
peaks at 17.5 Gt C/yr in 2100, then
declines by 1%!/yr

» Scenario 2: Fossil fuel CO, emission
peaks at 7.5 Gt C/yr in 2010, drops to zero
by 2100, and stringent reductions in
emissions of other GHGs or precursors
occur

* Climate sensitivity of 3 K
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Atmospheric pCO, (ppmv)
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Conclusions

Phasing out CO, emissions by 2100 has the
single largest impact in reducing the ocean
acidification that will otherwise occur

Extraordinary additional measures (adding 4 Gt
limestone/yr to the ocean for > 200 years)
provides a modest additional benefit

Compared to sequestering 0.5 Gt C/yr in soils or
In geological strata, adding 0.5 Gt C/yr of
dissolved CaCO; to the mixed layer (by adding 4
Gt/yr of limestone powder) has

- about twice the effect of ML supersaturation,
- about the same effect on ML pH, and
- about % the effect on atm pCO, and AT
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