Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Future BioGeoSCAPES program
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Other Workshops
      • GO-BCG Scoping Workshop
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • Arctic-COLORS Data Synthesis
    • Carbon Isotopes in the Ocean Workshop
    • CMIP6 WG
      • CMIP6 Models Workshop
    • Coastal BGS Obs with Fisheries
    • C-saw extreme events workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish, fisheries and carbon
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Marine carbon dioxide removal
      • Marine CDR Workshop
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • OOI BGC sensor WG
    • Phytoplankton Taxonomy WG
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for particle flux

Light matters for biological pump assessments

Posted by mmaheigan 
· Thursday, May 7th, 2020 

Organic carbon produced during photosynthesis in the sunlit euphotic zone is transported to the deep ocean via the ocean’s biological carbon pump (BCP). Even small changes in the BCP efficiency changes the carbon dioxide gradient across the ocean‐atmosphere interface, thus influencing global climate. A recent study in PNAS demonstrate that prior studies that estimate BCP efficiencies at a fixed depth fail because they do not consider the varying depth of light penetration, which ultimately controls production of sinking organic carbon and varies by location and season. Subsequently, the fixed depth approach introduces regional biases and underestimates global estimates of BCP efficiency by two-fold (Figure 1). These new findings make the case for using euphotic zone‐based metrics rather than applying a fixed depth to compare BCP efficiencies between sites. Improved estimates of BCP efficiency will lead to a better understanding of the mechanisms that control ocean carbon fluxes and its feedbacks on climate.

Figure 1: Carbon loss from the surface ocean shows more variability and is twice as high if measured at the depth where sunlight penetrates (left) vs. 150 meters (about 500 feet; right) where it is commonly measured. One Pg is 1015 grams with close to 6 Pg of carbon being transported to depth per year in left panel. In comparison, about 10 Pg C/yr is released to the atmosphere as a result of human activity.

 

Authors:
Ken Buesseler (WHOI)
Philip Boyd (IMAS Univ. Tasmania)
Erin Black (Dalhousie University)
David Siegel (University of California, Santa Barbara)

Also see: Tiny plankton drive processes in the ocean that capture twice as much carbon as scientists thought on The Conversation.

Featured on the cover of the PNAS May 5, 2020 issue:

The ecology of the biological carbon pump

Posted by mmaheigan 
· Tuesday, October 15th, 2019 

Plankton in the surface ocean convert CO2 into organic biomass thereby fueling marine food webs. Part of this organic biomass sinks down into the deep ocean, where the surface-derived organic carbon, or respired CO2, is locked in for decades to millennia. Without the biological carbon pump, atmospheric CO2 would be ~200 ppm higher than it is today. We know that ecological processes in the surface ocean plankton communities have a paramount importance on the efficiency of the biological carbon pump. Unfortunately, however, the mechanisms how ecology determines sinking fluxes are poorly understood.

A recent study in Global Biogeochemical Cycles used large-scale in situ mesocosms to explore how the ecological interplay within plankton communities affects the downward flux of organic material. Organic biomass tends to sink faster when produced by smaller organisms because the sinking material they generate forms dense aggregates. Conversely, larger organisms produce relatively porous particles that sink more slowly.

Figure: Flow chart illustrating how plankton community structure affects the properties of sinking organic particles and ultimately the strength and efficiency of the biological carbon pump. The thick arrows at the bottom indicate that flux attenuation depends on the properties of particulate matter formed in the surface ocean. For example, slow-sinking porous aggregates containing large amounts of easily degradable organic substances will decay faster (right side) than dense aggregates of more refractory organic matter (left side).

The key finding of this study was the unexpectedly large influence that plankton community composition has on the degradation rate of sinking organic biomass. In fact, degradation rates changed maximally 15-fold over the course of the study while sinking speed changed only 3-fold. Degradation rate of sinking material, measured in oxygen consumption assays, was quite variable and tended to be higher for more easily degradable fresh organic matter. The rate was lower during harmful algal blooms, which produce toxic substances that inhibit organisms that feed on aggregates thereby reducing degradation rates. These findings are an important step forward as they show that our predictive understanding of the biological carbon pump could be improved substantially when linking degradation rates of sinking material with ecological processes in surface ocean plankton communities.

Authors:
L. T. Bach (University of Tasmania)
P. Stange, J. Taucher, E. P. Achterberg, M. Esposito, U. Riebesell (GEOMAR)
M. Algueró‐Muñiz (Alfred-Wegener-Institut Helmholtz)
H. Horn (NIOZ and Utrecht University)

Northeast Pacific time-series reveals episodic events as major player in carbon export

Posted by mmaheigan 
· Tuesday, April 16th, 2019 

Temporal fluctuations in the oceanic carbon budget play an important role in the cycling of organic matter from production in surface waters to consumption and sequestration in the deep ocean. A 29-year time-series (1989-2017) of particulate organic carbon (POC) fluxes and seafloor measurements of oxygen consumption in the abyssal northeast Pacific (Sta. M, 4,000 m depth) recently revealed an increasing proportional contribution from episodic events over the past seven years. From 2011 to 2017, 43% of POC flux arrived during high-magnitude (≥ mean + 2 σ) episodic events. Time lags between changes in satellite-estimated export flux (EF), POC flux to the seafloor, and seafloor oxygen consumption varied from 0 to 70 days among six flux events, which could be attributed to variable remineralization rates and/or particle sinking speeds. The Martin equation, a commonly used model to estimate carbon flux, predicted background fluxes well but missed episodic fluxes, subsequently underestimating the measured fluxes by almost 50% (Figure 1). This study reveals the potential importance of episodic POC pulses into the deep sea in the oceanic carbon budget, which has implications for observing infrastructure, model development, and field campaigns focused on quantifying carbon export.

Figure Caption: (A) Station M POC flux measured from sediment traps compared to Martin model estimates, from 1989 to 2017. (B) Model performance for years with >50% sampling coverage: (POC fluxMartin − POC fluxtrap)/POC fluxtrap 100.

 

Authors:
Kenneth Smith (MBARI)
Henry Ruhl (MBARI, NOC)
Christine Huffard (MBARI)
Monique Messié (MBARI, Aix Marseille Université)
Mati Kahru (Scripps)

 

See also https://www.mbari.org/carbon-pulses-climate-models/

Alternative particle formation pathways identified in the Equatorial Pacific’s biological pump

Posted by mmaheigan 
· Tuesday, November 27th, 2018 

The ocean is one of the largest sinks of atmospheric carbon dioxide (CO2) on our planet, driven in part by CO2 uptake by phytoplankton in the upper ocean during photosynthesis. Eventually, a portion of the resulting organic carbon is transported to depth, where it is sequestered from the atmosphere for centuries or even millennia. Our current understanding of the biological pump is based on the export of organic material in the form of large, fast-sinking (hundreds of meters per day) particles. However, using lipids as biomarkers, a recent study from the Equatorial Pacific Ocean published in JGR Biogeosciences showed that fast-sinking particles are refractory and distinctly different from plankton in the mixed layer, whereas slow-sinking particles were more labile and had a more similar composition to mixed layer particles (Fig. 1).

Figure 1. Particle lipid compositions for different particle fractions: ML = homogenous mixed layer particles, SU = suspended, SS = slow-sinking, and FS = fast-sinking of a) labile compounds known as unsaturated fatty acids synthesized by phytoplankton that provide a lot of energy for heterotrophs and b) sterols, including cholesterol (dark blue), which can be a biomarker for heterotrophy. Mixed layer particles are the most labile, showing the least degree of heterotrophic reworking, as expected. However, fast-sinking particles are most dissimilar from those in the mixed layer, with only a small proportion of labile compounds and a high degree of heterotrophic reworking.

The authors proposed a slower, less efficient export pathway, by which phytoplankton initially aggregate to smaller, slower-sinking detrital particles and then gradually form highly degraded, larger particles that sink to depth. Since smaller particles are respired more rapidly than larger particles, the proportion of phytoplankton-captured atmospheric CO2 being stored in the deep ocean is likely reduced, particularly in regions dominated by smaller phytoplankton such as the Equatorial Pacific. This study clearly demonstrates the need for improved representation of a wider range of particle dynamics in models of the ocean’s biological pump.

 

Authors:
E. L. Cavan (University of Tasmania, previously University of Southampton)
S. Giering (National Oceanography Centre)
G. Wolff (University of Liverpool)
M. Trimmer (Queen Mary University London)
R. Sanders (National Oceanography Centre)

Shipboard LiDAR: A powerful tool for measuring the distribution and composition of particles in the ocean

Posted by mmaheigan 
· Tuesday, October 23rd, 2018 

Despite major advances in ocean observing capabilities, characterizing the vertical distribution of materials in the ocean with high spatial resolution remains challenging. Light Detection and Ranging (LiDAR), a technique that relies on measurement of the “time-of-flight” of a backscattered laser pulse to determine the range to a scattering object, could potentially fill this critical gap in our sampling capabilities by providing remote estimates of the vertical distribution of optical properties and suspended particles in the ocean.

A recent article in Remote Sensing of Environment details the development of a portable shipboard LiDAR and its capabilities for extending high-frequency measurements of scattering particles into the vertical dimension. The authors deployed the experimental system (shown in Figure 1a) during research cruises off the coast of Virginia and during a passenger ferry crossing of the Gulf of Maine (associated with the Gulf of Maine North Atlantic Time Series program-GNATS). Remote measurements of LiDAR signal attenuation corresponded well with simultaneous in situ measurements of water column optical properties and proxies for the concentration of suspended particles. Interestingly, the researchers also observed that the extent to which the return signal was depolarized (also known as the LiDAR depolarization ratio) may provide information regarding the composition of particles within the scattering volume. This is evidenced by the strong relationship between the depolarization ratio and the backscattering ratio, an indicator of the bulk composition (mineral vs. organic) of the particles within a scattering medium (Figure 1b).

Figure 1. a) LiDAR system deployed to look through a chock at the bow of the M/V Nova Star. b) Relationship between the LiDAR linear depolarization ratio (ρ) and coincident measurements of the particulate backscattering ratio (bbp/bp). The black line represents a least-squares exponential fit to the data.

As LiDAR technology becomes increasingly rugged, compact, and inexpensive, the regular deployment of oceanographic LiDAR on a variety of sampling platforms will become an increasingly practical method for characterizing the vertical and horizontal distribution of particles in the ocean. This has the potential to greatly improve our ability to investigate the role of particles in physical and biogeochemical oceanographic processes, especially when sampling constraints limit observations to the surface ocean.

 

Authors:
Brian L. Collister (Old Dominion University)
Richard C. Zimmerman (Old Dominion University)
Charles I. Sukenik (Old Dominion University
Victoria J. Hill (Old Dominion University)
William M. Balch (Bigelow Laboratory for Ocean Sciences)

Marine Snowfall at the Equator

Posted by mmaheigan 
· Thursday, July 19th, 2018 

The continual flow of organic particles such as dead organisms and fecal material towards the deep sea is called “marine snow,” and it plays an important role in the ocean carbon cycle and climate-related processes. This snowfall is most intense where high primary production can be observed near the surface. This is the case along the equator in the Pacific and Atlantic Oceans. However, it is not well known how particles are distributed at depth and which processes influence this distribution. A recent study published in Nature Geoscience involved the use of high-resolution particle density data using the Underwater Vision Profiler (UVP) from the equatorial Atlantic and Pacific Oceans down to a depth of 5,000 meters, revealing that several previously accepted ideas on the downward flux of particles into the deep sea should be revisited.

Figure 1. The Underwater Vision Profiler (UVP) during a trial in the Kiel Fjord. The UVP provided crucial data for the new study. Photo: Rainer Kiko, GEOMAR

 

It is typically assumed that the largest particle density can be found close to the surface and that density attenuates continuously with depth. However, high-resolution particle data show that density increases again in the 300-600-meter depth range. The authors attribute this observation to the daily migratory behavior of organisms such as zooplankton that retreat to these depths during the day, contributing to the particle load via defecation and mortality.

Another surprising result is the observation of many small particles below 1,000 meters depth that contribute a large fraction of the bathypelagic particle flux. This observation counters the general assumption, especially in many biogeochemical models, that particle flux at depth comprises fast sinking particles such as fecal pellets. Diminished remineralization rates of small particles or increased disaggregation of larger particles may contribute to the elevated small particle fluxes at this depth.

Figure 2. Zonal current velocity and Particulate Organic Carbon (POC) content across the equatorial Atlantic at 23˚W as observed in November 2012. From left to right: Zonal current velocity, POC content in small particle fraction and POC content in large particle fraction (adapted from Kiko et al. 2017).

 

This study highlights the importance of coupled biological and physical processes in understanding and quantifying the biological carbon pump. Further work on this important topic can now also be submitted to the new Frontiers in Marine Science research topic “Zooplankton and Nekton: Gatekeepers of the Biological Pump” (https://www.frontiersin.org/research-topics/8114/zooplankton-and-nekton-gatekeepers-of-the-biological-pump; Co-editors R. Kiko, M. Iversen, A. Maas, H. Hauss and D. Bianchi). The research topic welcomes a broad range of contributions, from individual-based process studies, to local and global field observations, to modeling approaches to better characterize the role of zooplankton and nekton for the biological pump.

 

Authors:
R. Kiko (GEOMAR)
A. Biastoch (GEOMAR)
P. Brandt (GEOMAR, University of Kiel)
S. Cravatte (LEGOS, University of Toulouse)
H. Hauss (GEOMAR)
R. Hummels (GEOMAR)
I. Kriest (GEOMAR)
F. Marin (LEGOS, University of Toulouse)
A. M. P. McDonnell (University of Alaska Fairbanks)
A. Oschlies (GEOMAR)
M. Picheral (Laboratoire d’Océanographie de Villefranche-sur-Mer, Observatoire Océanologique)
F. U. Schwarzkopf (GEOMAR)
A. M. Thurnherr (Lamont-Doherty Earth Observatory,)
L. Stemmann (Sorbonne Universités, Observatoire Océanologique)

Filter by Keyword

234Th disequilibrium abundance acidification africa air-sea flux air-sea interactions air-sea interface algae alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthro impacts anthropogenic carbon aquaculture aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic Atlantic modeling atmospheric carbon atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical cycling biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite calcium carbonate carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon export carbon sequestration carbon storage Caribbean CCA CCS changi changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation climate change climate variability CO2 CO2YS coastal darkening coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs CTD currents cyclone data data access data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate discrete measurements dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models ecology ecosystems ecosystem state eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production EXPORTS extreme events extreme weather events faecal pellets filter feeders filtration rates fire fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone fronts functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation ions iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio laboratory vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixing mixotrophy modeling models mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nuclear war nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC plankton POC polar regions pollutants precipitation predation prediction primary production primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seasonal trends sea spray seaweed sediments sensors shelf system shells ship-based observations shorelines silicate silicon cycle sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water quality waves western boundary currents wetlands winter mixing world ocean compilation zooplankton

Copyright © 2023 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.