Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • CMIP6 WG
      • CMIP6 Models Workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • Phytoplankton Taxonomy WG
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for carbon-sulfur coupling

A Methane-Charged Carbon Pump in Shallow Marine Sediments

Posted by mmaheigan 
· Wednesday, June 3rd, 2020 

Ocean margins are often characterized by the transport of methane, a potent greenhouse gas, entering from the subsurface and moving towards the seafloor. However, a significant portion of subsurface methane is consumed within shallow sediments via microbial driven anaerobic oxidation of methane (AOM). AOM converts the methane carbon to dissolved inorganic carbon (DIC) and reduces the amount of sulfate that diffuses down from the seafloor towards a sediment interval known as the sulfate-methane transition zone (SMTZ). The SMTZ is where the upward flux of methane encounters the downward diffusive sulfate flux (Figure 1). While the mechanisms of methane production and consumption have been extensively studied, the fate of the DIC that is produced in methane-charged sediments is not well constrained.

In a recent study published in Frontiers in Marine Science, authors used existing reports of methane and sulfate flux values to the SMTZ and synthesized a carbon flow model to quantify the DIC cycling in diffusive methane flux sites globally. They report an annual average of 8.7 Tmol (1 Tmol = 1012 moles) of DIC entering the diffusive methane-charged shallow marine sediments due to sulfate reduction coupled with AOM and organic matter degradation, as well as DIC input from depth (Figure 1). Approximately 75% (average of 6.5 Tmol year–1) of this DIC pool flows upward toward the water column, making it a potential contributor to oceanic CO2 and ocean acidification. Further, an average of 1.7 Tmol year–1 DIC precipitates as methane-derived authigenic carbonates. This synthesis emphasizes the importance of the SMTZ, not only as a methane sink but also an important biogeochemical front for global DIC cycling.

Figure 1: A simplified representation of DIC cycling at diffusive methane charged settings.

The study highlights that regions characterized by diffusive methane fluxes can contribute significantly to the oceanic inorganic carbon pool and sedimentary carbonate accumulation. DIC outflux from the methane-charged sediments is comparable to ~20% global riverine DIC flux to oceans. Methane-derived authigenic carbonate precipitation is comparable to ~15% of carbonate accumulation on continental shelves and in pelagic sediments, respectively. These  pathways must be included in coastal and geologic carbon models.

Authors:
Sajjad Akam (Texas A&M University-Corpus Christi)
Richard Coffin (Texas A&M University-Corpus Christi)
Hussain Abdulla (Texas A&M University-Corpus Christi)
Timothy Lyons (University of California, Riverside)

Filter by Keyword

abundance acidification africa air-sea interactions alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthropogenic carbon aragonite saturation arctic arsenic Atlantic Atlantic modeling atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bioavailability biogeochemical cycles biogeochemical models biogeochemistry biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity CaCO3 calcification calcite carbon-climate feedback carbon-sulfur coupling carbon cycle carbon dioxide carbon sequestration Caribbean CCA CCS changing marine ecosystems changing ocean chemistry chemoautotroph chl a chlorophyll circulation climate change CO2 coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs currents cyclone DCM decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration dimethylsulfide dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export EXPORTS extreme weather events faecal pellets filter feeders filtration rates fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forams freshening freshwater frontal zone functional role future oceans geochemistry geoengineering GEOTRACES glaciers gliders global carbon budget global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio land-ocean continuum larvaceans lateral transport lidar ligands light light attenuation mangroves marine heatwave marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixotrophy modeling mode water molecular diffusion MPT multi-decade NASA NCP net community production new technology nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean carbon uptake and storage ocean color ocean observatories ODZ oligotrophic omics OMZ open ocean optics organic particles overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic pH phenology phosphorus photosynthesis physical processes physiology phytoplankton plankton POC polar regions pollutants prediction primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seaweed sediments sensors shelf system shells ship-based observations silicate sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST subduction submesoscale subpolar subtropical surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano water quality western boundary currents wetlands winter mixing zooplankton

Copyright © 2021 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.