Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • CMIP6 WG
      • CMIP6 Models Workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • Phytoplankton Taxonomy WG
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for zooplankton

How environmental drivers regulated the long-term evolution of the biological pump

Posted by mmaheigan 
· Friday, January 22nd, 2021 

The marine biological pump (BP) plays a crucial role in regulating earth’s atmospheric oxygen and carbon dioxide levels by transferring carbon fixed by primary producers into the ocean interior and marine sediments, thereby controlling the habitability of our planet. The rise of multicellular life and eukaryotic algae in the ocean about 700 million years ago would likely have influenced the physical characteristics of oceanic aggregates (e.g., sinking rate), yet the magnitude of the impact this biological innovation had on the efficiency of BP is unknown.

Figure. 1. The impact of biological innovations (left) and environmental factors (atmospheric oxygen level and seawater temperature; right) on the efficiency of marine biological pump (BP). Temperatures are ocean surface temperatures (SST), and atmospheric pO2 is shown relative to the present atmospheric level (PAL). The BP efficiency is calculated as the fraction of carbon exported from the surface ocean that is delivered to the sediment-water interface. The results indicate that evolution of larger sized algae and zooplanktons has little influence on the long-term evolution of biological pump (left panel). The change in the atmospheric oxygen level and seawater surface temperature as environmental factors, on the other hand, have a stronger leverage on the efficiency of biological pump (right panel).

The authors of a recent paper in Nature Geoscience constructed a particle-based stochastic model to explore the change in the efficiency of the BP in response to biological and physical changes in the ocean over geologic time. The model calculates the age of organic particles in each aggregate based on their sinking rates, and considers the impact of primary producer cell size, aggregation, temperature, dust flux, biomineralization, ballasting by mineral phases, oxygen, and the fractal geometry (porosity) of aggregates. The model results demonstrate that while the rise of larger-sized eukaryotes led to an increase in the average sinking rate of oceanic aggregates, its impact on BP efficiency was minor. The evolution of zooplankton (with daily vertical migration in the water column) had a larger impact on the carbon transfer into the ocean interior. But results suggest that environmental factors most strongly affected the marine carbon pump efficiency. Specifically, increased ocean temperatures and greater atmospheric oxygen abundance led to a significant decrease in the efficiency of the BP. Cumulatively, these results suggest that while major biological innovations influenced the efficiency of BP, the long-term evolution of the marine carbon pump was primarily controlled by environmental drivers such as climate cooling and warming. By enhancing the rate of heterotrophic microbial degradation, our results suggest that the anthropogenically-driven global warming can result in a less efficient BP with reduced power of marine ecosystem in sequestering carbon from the atmosphere.

Authors:
Mojtaba Fakhraee (Yale University, Georgia Tech, and NASA Astrobiology Institute)
Noah J. Planavsky (Yale University, and NASA Astrobiology Institute)
Christopher T. Reinhard (Georgia Tech, and NASA Astrobiology Institute)

Climate-driven pelagification of marine food webs: Implications for marine fish populations

Posted by mmaheigan 
· Friday, January 22nd, 2021 

Global warming changes the conditions for all ocean life, with wide-ranging consequences. It is particularly difficult to predict the impact of climate change on fish because fish production is conditioned on both temperature and food resource (zooplankton and benthic organisms) changes. Climate change projections from Earth system models show a negative amplification of changes in global ocean net primary production (NPP), with an approximate doubling of production decreases from net primary producers to mesozooplankton. This “trophic amplification” continues up the marine food web to fishes. A new study published in Frontiers in Marine Science illustrates this amplification clearly when fishes are defined by their maximum body size, which describes their position in the food web (Figure 1a). However, decreases in globally integrated biomass and production were not limited to differences in size alone. Importantly, reduced abundances also varied by fish functional type (Figure 1b).

Figure 1: a) Percent change in net primary production (NPP), mesozooplankton (MesoZ) production, all medium (M) fishes, and all large (L) fishes from Historic (1951-2000) to the RCP 8.5 Projection (2051-2100). b) Percent change in production of forage fish, large pelagic fish, demersal fish, and benthic invertebrates in Projection (2051-2100) from Historic (1951-2000). c) Absolute change in the ratio of zooplankton production to seafloor detrital flux as the difference of the Projection (2051-2100) from the Historic (1951-2000). d) Percent change in zooplankton production (dashed grey), percent change in seafloor detrital flux (solid grey), and absolute change in the ratio of their means during the Historic and Projection time periods relative to 1951.

Despite the “pelagification” of marine food webs caused by unequal decreases in secondary production (Figure 1d) and subsequent increases in pelagic zooplankton production relative to seafloor detritus production (Figure 1c,d), large pelagic fish (e.g., tunas and billfishes) suffered the greatest declines and the highest degree of projection uncertainty. The result was a shift from benthic-based ecosystems historically dominated by large demersal fish (e.g., cods and flounders) towards pelagic-based ones dominated by smaller forage fish (e.g., sardines and herring). Any positive impacts of the pelagification of food resources on large pelagic fish were overwhelmed by the negative impacts of the overall reduction in global productivity, compounded by warming-induced increases in metabolic demands. Both the degree of change in the productivity of large pelagic fish and the magnitude of trophic amplification were sensitive to the temperature dependence of metabolic rates. Thus, better constraints are needed on empirical estimates of the effect of temperature on physiological rates to project the impacts of climate change on fish biomass and marine ecosystem structure.

Ocean fish harvests currently supply ~15% of global protein demand. Reduced primary production will decrease the total amount of fish available to harvest for human food, while the pelagification of ecosystems could require large and expensive structural modifications to fisheries, including gear, location, regional and international management plans, consumer demands, and market values.

 

Figure caption: a) Percent change in net primary production (NPP), mesozooplankton (MesoZ) production, all medium (M) fishes, and all large (L) fishes from Historic (1951-2000) to the RCP 8.5 Projection (2051-2100). b) Percent change in production of forage fish, large pelagic fish, demersal fish, and benthic invertebrates in Projection (2051-2100) from Historic (1951-2000). c) Absolute change in the ratio of zooplankton production to seafloor detrital flux as the difference of the Projection (2051-2100) from the Historic (1951-2000). d) Percent change in zooplankton production (dashed grey), percent change in seafloor detrital flux (solid grey), and absolute change in the ratio of their means during the Historic and Projection time periods relative to 1951.

 

Authors:

Colleen M. Petrik, Texas A&M University

Charles A. Stock, Geophysical Fluid Dynamics Laboratory

Ken H. Andersen, Technical University of Denmark

P. Daniël van Denderen, International Council for the Exploration of the Seas

James R. Watson, Oregon State University

How zooplankton control carbon export in the Southern Ocean

Posted by mmaheigan 
· Thursday, December 3rd, 2020 

The Southern Ocean exhibits an inverse relationship between surface primary production and export flux out of the euphotic zone. The causes of this production-export decoupling are still under debate. A recently published mini review in Frontiers in Marine Science focused on zooplankton, an important component of Southern Ocean food webs and the biological pump. The authors compared carbon export regimes from the naturally iron-fertilised Kerguelen Plateau (high surface production, but generally low export) with the iron-limited and less productive high nutrient, low chlorophyll (HNLC) waters south of Australia, where carbon export is relatively high.

Figure 1: The role of zooplankton in establishing the characteristic export regimes at two sites in the Southern Ocean, (a) the highly productive northern Kerguelen Plateau, which exhibits low export, and (b) the iron-limited waters south of Australia with low production, but relatively high carbon export.

Size structure and zooplankton grazing pressure are found to shape carbon export at both sites. On the Kerguelen Plateau, a large size spectrum of zooplankton acts as “gate-keeper” to the mesopelagic by significantly reducing the sinking flux of phytoaggregates, which establishes the characteristic low export regime. In the HNLC waters, however, the zooplankton community is low in biomass and grazes predominantly on smaller particles, which leaves the larger particles for export and leads to relatively high export flux.

Gaps in knowledge related to insufficient seasonal data coverage, understudied carbon flux pathways, and associated mesopelagic processes limit our current understanding of carbon transfer through the water column and export. More integrated data collection efforts, including the use of autonomous profiling floats (e.g., BGC-Argo), stationary moorings, etc., will improve seasonal carbon flux data coverage, thus enabling more reliable estimation of carbon export and storage in the Southern Ocean and improved projection of future changes in carbon uptake and atmospheric carbon dioxide levels.

 

Authors:
Svenja Halfter (University of Tasmania)
Emma Cavan (Imperial College London)
Ruth Eriksen (CSIRO)
Kerrie Swadling (University of Tasmania)
Philip Boyd (University of Tasmania)

Water clarity impacts temperature and biogeochemistry in Chesapeake Bay

Posted by mmaheigan 
· Thursday, December 3rd, 2020 

Estuarine water clarity is determined by suspended materials in the water, including colored dissolved organic matter, phytoplankton, sediment, and detritus. These constituents directly affect temperature because when water is opaque, sunlight heats only the shallowest layers near the surface, but when water is clear, sunlight can penetrate deeper, warming the waters below the surface. Despite the importance of accurately predicting temperature variability, many numerical modeling studies do not adequately parameterize this fundamental relationship between water clarity and temperature.

In a recent study published in Estuaries and Coasts, the authors quantified the impact of a more realistic representation of water clarity in a hydrodynamic-biogeochemical model of the Chesapeake Bay by comparing two simulations: (1) water clarity is constant in space and time for the calculation of solar heating vs. (2) water clarity varies with modeled concentrations of light-attenuating materials. In the variable water clarity simulation (2), the water is more opaque, particularly in the northern region of the Bay. During the spring and summer months, the lower water clarity in the northern Bay is associated with warmer surface temperatures and colder bottom temperatures. Warmer surface temperatures encourage phytoplankton growth and nutrient uptake near the head of the Bay, thus fewer nutrients are transported downstream. These conditions are exacerbated during high-river flow years, when differences in temperature, nutrients, phytoplankton, and zooplankton extend further seaward.

Figure 1: Top row: Difference in the light attenuation coefficient for shortwave heating, kh[m-1] (variable minus constant light attenuation simulation). June, July, and August average for (A) 2001, (B) average of 2001-2005, and (C) 2003; difference in bottom temperatures [oC] (variable minus constant). Bottom row: Difference in June, July, and August average bottom temperature for (D) 2001, (E) average of 2001-2005, and (F) 2003. Data for 2001 are representative of low river discharge, and 2003 are representative high river discharge years.

This work demonstrates that a constant light attenuation scheme for heating calculations in coupled hydrodynamic-biogeochemical models underestimates temperature variability, both temporally and spatially. This is an important finding for researchers who use models to predict future temperature variability and associated impacts on biogeochemistry and species habitability.

 

Authors:
Grace E. Kim (NASA, Goddard Space Flight Center)
Pierre St-Laurent (VIMS, William & Mary)
Marjorie A.M. Friedrichs (VIMS, William & Mary)
Antonio Mannino (NASA, Goddard Space Flight Center)

Austral summer vertical migration patterns in Antarctic zooplankton

Posted by mmaheigan 
· Thursday, October 15th, 2020 

Sunrise and sunset are the main cues driving zooplankton diel vertical migration (DVM) throughout the world’s oceans. These marine animals balance the trade-off between feeding in surface waters at night and avoiding predation during the day at depth. Near-constant daylight during polar summer was assumed to dampen these daily migrations. In a recent paper published in Deep-Sea Research I, authors assessed austral summer DVM patterns for 15 taxa over a 9-year period. Despite up to 22 hours of sunlight, a diverse array of zooplankton – including copepods, krill, pteropods, and salps – continued DVM.

Figure caption: Mean day (orange) and night (blue) abundance of (A) the salp Salpa thompsoni, (B) the krill species Thysanoessa macrura, (C) the pteropod Limacina helicina, and (D) chaetognaths sampled at discrete depth intervals from 0-500m. Horizontal dashed lines indicate weighted mean depth (WMD). N:D is the night to day abundance ratio for 0-150 m. Error bars indicate one standard error. Sample size n = 12 to 22. Photos by Larry Madin, Miram Gleiber, and Kharis Schrage.

The Palmer Antarctica Long-Term Ecological Research (LTER) Program conducted this study using a MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) to collect depth-stratified samples west of the Antarctic Peninsula. The depth range of migrations during austral summer varied across taxa and with daylength and phytoplankton biomass and distribution. While most taxa continued some form of DVM, others (e.g., carnivores and detritivores) remained most abundant in the mesopelagic zone, regardless of photoperiod, which likely impacted the attenuation of vertical carbon flux. Given the observed differences in vertical distribution and migration behavior across taxa, ongoing changes in Antarctic zooplankton assemblages will likely impact carbon export pathways. More regional, taxon-specific studies such as this are needed to inform efforts to model zooplankton contributions to the biological carbon pump.

 

Authors:
John Conroy (VIMS, William & Mary)
Deborah Steinberg (VIMS, William & Mary)
Patricia Thibodeau (VIMS, William & Mary; currently University of Rhode Island)
Oscar Schofield (Rutgers University)

Turning a spotlight on grazing

Posted by mmaheigan 
· Thursday, July 23rd, 2020 

Microscopic plankton in the surface ocean make planet Earth habitable by generating oxygen and forming the basis of marine food webs, yielding harvestable protein. For over 100 years, oceanographers have tried to ascertain the physical, chemical, and biological processes governing phytoplankton blooms. Zooplankton grazing of phytoplankton is the single largest loss process for primary production, but empirical grazing data are sparse and thus poorly constrained in modeling frameworks, including assessments of global elemental cycles, cross-ecosystem comparisons, and predictive efforts anticipating future ocean ecosystem function. As sunlight decays exponentially with depth, upper-ocean mixing creates dynamic light environments with predictable effects on phytoplankton growth but unknown consequences for grazing.

Figure caption: Rates (d−1) of phytoplankton growth (μ), grazing mortality (g), and biomass accumulation (r) under four mixed layer scenarios simulated using light as a proxy of (a) sustained deep mixing, (b) rapid shoaling, (c) sustained shallow mixing, and (d) rapid mixed layer deepening. Error bars represent one standard deviation of the mean of duplicate experiments. Grazing was measured but not detected in the sustained deep mixing and rapid shoaling conditions, denoted with x.

Using data from a spring cruise in the North Atlantic, authors of a recent study published in Limnology & Oceanography compared the influences of microzooplankton predation and fluctuations in light availability—representative of a mixing water column—on phytoplankton standing stock. Data from at-sea incubations and light manipulation experiments provide evidence that phytoplankton’s instantaneous and zooplankton’s delayed responses to light fluctuations are key modulators of the balance between phytoplankton growth and grazing rates (Figure 1). These results suggest that light is a potential, remotely retrievable predictor of when and where in the ocean zooplankton grazing may represent an important loss term of phytoplankton production. If broadly verified, this approach could be used to systematically assess sparsely measured grazing across spatial and temporal gradients in representative regions of the ocean. Such data will be essential for enhancing our predictive capacity of ocean food web function, global biogeochemical cycles and the many derived processes, including fisheries production and the flow of carbon through the oceans.

Authors:
Françoise Morison (University of Rhode Island)
Gayantonia Franzè (University of Rhode Island, currently Institute of Marine Research, Norway)
Elizabeth Harvey (University of Georgia, currently University of New Hampshire)
Susanne Menden-Deuer (University of Rhode Island)

 

Modern OMZ copepod dynamics provide analog for future oceans

Posted by mmaheigan 
· Thursday, July 23rd, 2020 

Global warming increases ocean deoxygenation and expands the oxygen minimum zone (OMZ), which has implications for major zooplankton groups like copepods. Reduced oxygen levels may impact individual copepod species abundance, vertical distribution, and life history strategy, which is likely to perturb intricate oceanic food webs and export processes. In a study recently published in Biogeosciences, authors conducted vertically-stratified day and night MOCNESS tows (0-1000 m) during four cruises (2007-2017) in the Eastern Tropical North Pacific, sampling hydrography and copepod distributions in four locations with different water column oxygen profiles and OMZ intensity (i.e. lowest oxygen concentration and its vertical extent in a profile). Each copepod species exhibited a different vertical distribution strategy and physiology associated with oxygen profile variability. The study identified sets of species that (1) changed their vertical distributions and maximum abundance depth associated with the depth and intensity of the OMZ and its oxycline inflection points, (2) shifted their diapause depth, (3) adjusted their diel vertical migration, especially the nighttime upper depth, or (4) expanded or contracted their depth range within the mixed layer and upper part of the thermocline in association with the thickness of the aerobic epipelagic zone (habitat compression concept) (Figure 1). Distribution depths for some species shifted by 10’s to 100’s of meters in different situations, which also had metabolic (and carbon flow) implications because temperature decreased with depth.  This observed present-day variability may provide an important window into how future marine ecosystems will respond to deoxygenation.

Figure caption: Schematic diagram showing how future OMZ expansion may affect zooplankton distributions, based on present-day responses to OMZ variability. The dashed line indicates diel vertical migration (DVM) and highlights the shoaling of the nighttime depth as the aerobic habitat is compressed. The lower oxycline community and the diapause layer for some species, associated with a specific oxygen concentration, may deepen as the OMZ expands.

 

Authors:
Karen F. Wishner (University of Rhode Island)
Brad Seibel (University of South Florida)
Dawn Outram (University of Rhode Island)

Tiny, but effective: Gelatinous zooplankton and the ocean biological carbon pump

Posted by mmaheigan 
· Wednesday, March 25th, 2020 

Barely visible to the naked eye, gelatinous zooplankton play important roles in marine food webs. Cnidaria, Ctenophora, and Urochordata are omnipresent and provide important food sources for many more highly developed marine organisms. These small, nearly transparent organisms also transport large quantities of “jelly-carbon” from the upper ocean to depth. A recent study in Global Biogeochemical Cycles focused on quantifying the gelatinous zooplankton contribution to the ocean carbon cycle.

Figure 1. Processes and pathways or gelatinous carbon transfer to the deep ocean.

Using >90,000 data points (1934 to 2011) from the Jellyfish Database Initiative (JeDI), the authors compiled global estimates of jellyfish biomass, production, vertical migration, and jelly carbon transfer efficiency. Despite their small biomass relative to the total mass of organisms living in the upper ocean, their rapid, highly efficient sinking makes them a globally significant source of organic carbon for deep-ocean ecosystems, with 43-48% of their upper ocean production reaching 2000 m, which translates into 0.016 Pg C yr-1.

Figure 2. Mass deposition event of jellyfish at 3500 m in the Arabian Sea (Billett et al. 2006).

Sediment trap data have suggested that carbon transport associated with large, episodic gelatinous blooms in localized open ocean and continental shelf regions could often exceed phytodetrital sources, in particular instances. These mass deposition events and their contributions to deep carbon export must be taken into account in models to better characterize marine ecosystems and reduce uncertainties in our understanding of the ocean’s role in the global carbon cycle.

Links:

Jellyfish Database Initiative http://jedi.nceas.ucsb.edu, http://jedi.nceas.ucsb.edu-dmo.org/dataset/526852 )

 

Authors:
Mario Lebrato (Christian‐Albrechts‐University Kiel and Bazaruto Center for Scientific Studies, Mozambique)
Markus Pahlow (GEOMAR)
Jessica R. Frost (South Florida Water Management District)
Marie Küter (Christian‐Albrechts‐University Kiel)
Pedro de Jesus Mendes (Marine and Environmental Scientific and Technological Solutions, Germany)
Juan‐Carlos Molinero (GEOMAR)
Andreas Oschlies (GEOMAR)

Krillin’ it with poop: Highlighting the importance of Antarctic krill in ocean carbon and nutrient cycling

Posted by mmaheigan 
· Tuesday, February 4th, 2020 

Scientists have long known the role of Antarctic krill (Euphausia superba) in Southern Ocean ecosystems. Evidence is gathering about krill’s biogeochemical importance through releasing millions of faecal pellets in swarms and stimulating primary production through nutrient excretion. Here, we explore and synthesise the known impacts that this highly abundant and rather large species has on the environment. Krill exemplify how metazoa can play a dominant role in shaping ocean biogeochemistry, thus providing additional motivation for protecting certain harvested species.

Figure 1: The ecological roles of krill in Southern Ocean biogeochemical cycles, including releasing faecal pellets, excreting nutrients whilst grazing, and larval krill migrating throughout the water column, shedding exoskeletons, and feeding on the seabed.

A review published in Nature Communications uncovers at least 13 possible pathways by which Antarctic krill either influence the carbon sink or release fertilizing nutrients (Figure 1). Their large size (up to 7 cm) and swarming nature (millions of krill aggregate) enable krill to strongly impact ocean biogeochemistry. Swarms release large numbers of faecal pellets, overwhelming detritivores and resulting in a large sink of faecal carbon. Krill may physically mix nutrients from the deep ocean and become a decades-long carbon store in whale biomass. Antarctic krill larvae, which live near the sea-ice, undergo deeper diel vertical migrations compared to adult Antarctic krill (400 m vs. 200 m), so any carbon respired or faecal pellets released by larvae could remain in the deep ocean longer than those released by adult krill at a shallower depth; the larval krill contribution to carbon export has not been quantified. Furthermore, it is currently unknown how many krill larvae are removed from the Antarctic krill fishery as by-catch. Perhaps the biggest challenge in constraining the role of krill (adult and larvae) in biogeochemical cycles is our limited capacity to quantify the abundance and biomass of Antarctic krill, since shipboard sampling methods (nets or acoustics) have limited spatial and temporal coverage. Ultimately, the Southern Ocean is an important physical AND biological sink of carbon, and we must consider the role krill and other animals have in this cycle.

Figure 2: Processes in the biological carbon pump including the sinking of dead phytoplankton aggregates, zooplankton, krill and fish faecal pellets and dead animals. Microbial remineralisation is depicted through the return of particulate organic carbon to dissolved organic carbon (DOC) and eventually carbon dioxide.

Authors:
Emma Cavan (Imperial College London and University of Tasmania)
Anna Belcher (British Antarctic Survey)
Angus Atkinson (Plymouth Marine Laboratory)
Simeon Hill (British Antarctic Survey)
So Kawaguchi (Australian Antarctic Division)
Stacey McCormack (University of Tasmania)
Bettina Meyer (Alfred Wegener Institute for Polar and Marine Research and University of Oldenburg)
Stephen Nicol (University of Tasmania)
Lavenia Ratnarajah (University of Liverpool)
Katrin Schmidt (University of Plymouth)
Deborah Steinberg (Virginia Institute of Marine Science)
Geraint Tarling (British Antarctic Survey)
Philip Boyd (University of Tasmania and Antarctic Climate and Ecosystems Cooperative Research Centre)

Zooplankton-fueled carbon export is changing in the North Atlantic Ocean

Posted by mmaheigan 
· Monday, June 10th, 2019 

Zooplankton-mediated carbon export is an important, but variable and relatively unconstrained part of the biological carbon pump—the processes that fix atmospheric carbon dioxide in organic material and transport it from the upper sunlit ocean to depth. Changes in the biological pump impact the climate system, but are challenging to quantify because such analyses require spatially and temporally explicit information about biological, chemical, and physical properties of the ocean, where empirical observations are in short supply.

A recent study in Nature, Ecology and Evolution focused on copepods in the northern half of the North Atlantic Ocean, where the Continuous Plankton Recorder (CPR) time series program has documented surface plankton abundance and taxonomic composition for nearly six decades. Copepods transport carbon passively by producing sinking fecal pellets while feeding near the sea surface, and actively via daily and seasonal migrations to deeper waters where carbon is released through respiration, defecation, and mortality. Using allometry, metabolic theory, and an optimal behavior model, the authors examined patterns of passive and active carbon transport from 1960 to 2014 and sensitivity of carbon export to different model inputs.

Figure caption: Spatial distribution and change, from 1960 to 2014, of modeled copepod-mediated carbon flux: top left – mean passive carbon flux (sinking fecal pellets), bottom left – change in passive carbon flux, top right – mean active carbon flux (respiration plus fecal pellets produced during diel vertical migration), bottom right – change in active carbon flux.

The authors observed that from southern Iceland to the Gulf of Maine, copepod-mediated carbon transport has increased over the last six decades, with the highest rates around 30 mgC m-2 y-1 each decade for passive flux, and 4 mgC m-2 y-1 each decade for active flux. Meanwhile, it has decreased across much of the more temperate central northern North Atlantic with highest rates around 69 mgC m-2 y-1 each decade for passive flux and 8 mgC m-2 y-1 each decade for active flux. This pattern is largely driven by changes in copepod population distributions and community structure, specifically the distributions of large and abundant species (e.g. Calanus spp.). These results suggest that shifts in species distributions driven by a changing global climate are already impacting ecosystem function across the northern North Atlantic Ocean. These shifts are not latitudinally uniform, thus highlighting the complexity of marine ecosystems. This study demonstrates the importance of these sustained plankton measurements and how plankton-mediated carbon fluxes can be mechanistically implemented in next-generation biogeochemical models.

Authors:
Philipp Brun (Technical University of Denmark and Swiss Federal Research Institute)
Karen Stamieszkin (University of Maine, Bigelow Lab and Virginia Institute of Marine Science)
Andre W. Visser (Technical University of Denmark)
Priscilla Licandro (Sir Alister Hardy Foundation for Ocean Science, Plymouth Marine Laboratory, and Stazione Zoologica Anton Dohrn, Italy)
Mark R. Payne (Technical University of Denmark)
Thomas Kiørboe (Technical University of Denmark)

 

Also see OCB2019 plenary session: The effect of size on ocean processes (allometry) and implications for export (Thursday, June 27, 2019)

Next Page »

Filter by Keyword

abundance acidification africa air-sea interactions alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthropogenic carbon aragonite saturation arctic arsenic Atlantic Atlantic modeling atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bioavailability biogeochemical cycles biogeochemical models biogeochemistry biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity CaCO3 calcification calcite carbon-climate feedback carbon-sulfur coupling carbon cycle carbon dioxide carbon sequestration Caribbean CCA CCS changing marine ecosystems changing ocean chemistry chemoautotroph chl a chlorophyll circulation climate change CO2 coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs currents cyclone DCM decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration dimethylsulfide dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export EXPORTS extreme weather events faecal pellets filter feeders filtration rates fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forams freshening freshwater frontal zone future oceans geochemistry geoengineering GEOTRACES glaciers gliders global carbon budget global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio land-ocean continuum larvaceans lateral transport lidar ligands light light attenuation mangroves marine heatwave marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixotrophy modeling mode water molecular diffusion MPT multi-decade NASA NCP net community production new technology nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean carbon uptake and storage ocean color ocean observatories ODZ oligotrophic omics OMZ open ocean optics organic particles overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic pH phenology phosphorus photosynthesis physical processes physiology phytoplankton plankton POC polar regions pollutants prediction primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seaweed sediments sensors shelf system shells ship-based observations silicate sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST subduction submesoscale subpolar subtropical surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano water quality western boundary currents wetlands winter mixing zooplankton

Copyright © 2021 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.