Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Future BioGeoSCAPES program
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Other Workshops
      • GO-BCG Scoping Workshop
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • Arctic-COLORS Data Synthesis
    • Carbon Isotopes in the Ocean Workshop
    • CMIP6 WG
      • CMIP6 Models Workshop
    • C-saw extreme events workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • OOI BGC sensor WG
    • Phytoplankton Taxonomy WG
    • Problem solving in marine carbon dioxide removal (mCDR)
      • Marine CDR Workshop
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for acidification

What drives decadal changes in the Chesapeake Bay carbonate system?

Posted by mmaheigan 
· Tuesday, May 3rd, 2022 

Understanding decadal changes in the coastal carbonate system (CO2-system) is essential for predicting how the health of these waters is affected by anthropogenic drivers, such as changing atmospheric conditions and terrestrial inputs. However, studies that quantify the relative impacts of these drivers are lacking.

A recent study in Journal of Geophysical Research: Oceans identified the primary drivers of acidification in the Chesapeake Bay over the past three decades. The authors used a three-dimensional hydrodynamic-biogeochemistry model to quantify the relative impacts on the Bay CO2-system from increases in atmospheric CO2, temperature, oceanic dissolved inorganic carbon (DIC) concentrations, terrestrial loadings of total alkalinity (TA) and DIC, as well as decreases in terrestrial nutrient inputs. Decadal changes in the surface CO2-system in the Chesapeake Bay exhibit large spatial and seasonal variability due to the combination of influences from the land, ocean and atmosphere. In the upper Bay, increased riverine TA and DIC from the Susquehanna River have increased surface pH, with other drivers only contributing to decadal changes that are one to two orders of magnitude smaller. In the mid- and lower Bay, higher atmospheric CO2 concentrations and reduced nutrient loading are the two most critical drivers and have nearly equally reduced surface pH in the summer. These decadal changes in surface pH show significant seasonal variability with the greatest magnitude generally aligning with the spring and summer shellfish production season (Figure 1).

Figure 1: Overall changes in modeled surface pH (ΔpHall) due to all global and terrestrial drivers combined over the past 30 years (i.e., 2015–2019 relative to 1985–1989). ΔpHall includes changes in surface pH due to increased atmospheric CO2, increased atmospheric thermal forcing, increased oceanic dissolved inorganic carbon concentrations, decreased riverine nitrate concentrations, decreased riverine organic nitrogen concentrations, and increased riverine total alkalinity and dissolved inorganic carbon concentrations.

 

These results indicate that a number of global and terrestrial drivers play crucial roles in coastal acidification. The combined effects of the examined drivers suggest that calcifying organisms in coastal surface waters are likely facing faster decreasing rates of pH than those in open ocean ecosystems. Decreases in surface pH associated with nutrient reductions highlight that the Chesapeake Bay ecosystem is returning to a more natural condition, e.g., a condition when anthropogenic nutrient input from the watershed was lower. However, increased atmospheric CO2 is simultaneously accelerating the rate of change in pH, exerting increased stress on estuarine calcifying organisms. For ecosystems such as the Chesapeake Bay where nutrient loading is already being managed, controlling the emissions of anthropogenic CO2 globally becomes increasingly important to decelerate the rate of acidification and to relieve the stress on estuarine calcifying organisms. Future observational and modeling studies are needed to further investigate how the decadal trends in the Chesapeake Bay CO2-system may vary with depth. These efforts will improve our current understanding of long-term change in coastal carbonate systems and their impacts on the shellfish industry.

 

Authors:
Fei Da (Virginia Institute of Marine Science, William & Mary, USA)
Marjorie A. M. Friedrichs (Virginia Institute of Marine Science, William & Mary, USA)
Pierre St-Laurent (Virginia Institute of Marine Science, William & Mary, USA)
Elizabeth H. Shadwick (CSIRO Oceans and Atmosphere, Australia)
Raymond G. Najjar (The Pennsylvania State University, USA)
Kyle E. Hinson (Virginia Institute of Marine Science, William & Mary, USA)

Acidity across the interface from the ocean surface to sea spray aerosol

Posted by mmaheigan 
· Wednesday, March 31st, 2021 

The pH of aerosols controls their impact on climate and human health. Sea spray aerosols are one of the largest sources of aerosols globally by mass, yet it has been challenging to measure the pH of fresh sea spray aerosols in the past. A recent study published in PNAS measured sea spray aerosols under controlled conditions, during a sampling intensive called SeaSCAPE, and optimized a pH paper-based technique to measure the aerosol acidity. The authors found that fresh sea spray aerosols can be rapidly acidified by 4 to 6 orders of magnitude relative to the ocean. This acidification is caused by interaction with surrounding acidic gases, changes in relative humidity, and enhanced dissociation of organic acids within the aerosols. This is a critical finding since the pH of aerosols controls key atmospheric chemical reactions including sulfur dioxide oxidation to form particulate sulfate. The results are also important in light of the fact that enzyme activity has been observed in sea spray aerosols, and enzyme activity is pH dependent.

Figure 1. Acidity of nascent sea spray aerosols (SSA) compared to bulk ocean water measured during the 2019 SeaSCAPE sampling intensive. Background artwork by Nigella Hillgarth.

 

Authors
Kyle Angle (University of California, San Diego)
Daniel Crocker (University of California, San Diego)
Rebecca Simpson (University of California, San Diego)
Kathryn Mayer (University of California, San Diego)
Lauren Garofalo (Colorado State University, Fort Collins)
Alexia Moore (University of California, San Diego)
Stephanie Mora Garcia (University of California, San Diego)
Victor Or (University of California, San Diego)
Sudarshan Srinivasan (University of California, San Diego)
Mahum Farhan (University of California, San Diego)
Jonathan Sauer (University of California, San Diego)
Christopher Lee (University of California, San Diego)
Matson Pothier (Colorado State University, Fort Collins)
Delphine Farmer (Colorado State University, Fort Collins)
Todd Martz (University of California, San Diego)
Timothy Bertram (University of Wisconsin, Madison)
Christopher Cappa (University of California, Davis)
Kimberly Prather (University of California, San Diego)
Vicki Grassian (University of California, San Diego)

 

Joint post with Surface Ocean – Lower Atmosphere Study (SOLAS)

Pteropod populations stable or increasing according to long-term study along the Western Antarctic Peninsula

Posted by mmaheigan 
· Thursday, March 21st, 2019 

Shelled pteropods (pelagic snails) are abundant planktonic predators and prey, linking grazers and higher trophic levels and contributing to the carbon cycle via consumption and excretion. Pteropods have been heralded as bioindicators of ocean acidification, given their aragonitic shell’s susceptibility to dissolution, which could ultimately lead to declining abundance. However, pteropod population dynamics are understudied, particularly in the Southern Ocean, a region predicted to be highly impacted by both warming and ocean acidification. In a recent publication in Limnology and Oceanography, long-term data sets from the Western Antarctic Peninsula show that while there is considerable interannual variability in pteropod abundance, populations have remained stable over the past 25 years, with some pteropod species (gymnosomes (non-shelled pteropod) overall, L. antarctica and C. pyramidata (shelled pteropods) regionally) even increasing during this period (Figure 1).


Figure 1. Annual pteropod abundance anomalies for the entire Palmer Antarctica Long-Term Ecological Research (LTER) study region along the Western Antarctic Peninsula. (a) Limacina helicina antarctica (shelled pteropod), (b) Gymnosomes – nonshelled pteropods that prey on shelled pteropods (p = 0.007, r2 = 0.27), and (c) Clio pyramidata (shelled pteropod). Effect of environment on pteropod abundance. (d) SST vs. L. antarctica abundance, e) Sea ice advance vs. L. antarctica and Gymnosome abundance, (f) Sea ice retreat vs. C. pyramidata abundance. Data plotted are annual anomalies for each year of the time series (1993–2017). Sea ice advance is lagged 2-yr behind pteropod abundance (e.g., 2017 pteropod annual anomaly is plotted against 2015 sea ice advance annual anomaly) SST are lagged 1-yr behind L. antarctica abundance (e.g., 2017 L. antarctica annual anomaly is plotted against 2016 SST). Regression lines for significant linear relationships are shown, regression statistics are as follows: (d) SST vs. L. antarctica (circles): n = 25, p = 0.006, r2 = 0.25 (e) sea ice advance vs. L. antarctica (filled-circles) and Gymnosomes (empty-circles): n = 25, p = 0.003, r2 = 0.30 (dashed line); (f) sea ice retreat vs. C. pyramidata (squares): n = 14, p = 0.0003, r2 = 0.64.

There was no significant influence of carbonate chemistry parameters (e.g., aragonite saturation state) on pteropod abundance, since the Western Antarctic Peninsula has yet to experience prolonged conditions characteristic of ocean acidification. However, other environmental factors such as warming and associated sea ice retreat were more influential. For example, warmer, ice-free waters in one year typically led to higher pteropod abundances the following year, suggesting that pteropods may be better adapted than expected to warming conditions due to climate change. The authors propose that earlier sea ice retreat promotes recruitment and subsequent expansion of pteropods further South, which could explain their increased abundance in this subregion. These results increase our understanding of pteropod responses to environmental variability, which is important for predicting future effects of climate change on regional carbon cycling and plankton trophic interactions in the Southern Ocean.

 

Authors:
Patricia S. Thibodeau (VIMS)
Deborah K. Steinberg (VIMS)
Sharon E. Stammerjohn (University of Colorado at Boulder)
Claudine Hauri (University of Alaska Fairbanks)

You better repeat it: Serial ocean acidification experiments on fish early life stages

Posted by mmaheigan 
· Tuesday, March 5th, 2019 

To detect potential effects of acidification on marine organisms, experimenters most commonly use within-experiment replication, but repeating the experiments themselves is rarely done. While the first approach suffices to detect major CO2 effects, other potentially important responses may get detected and robustly quantified only via serial experimentation. A study by Baumann et al. in Biology Letters comprises a meta-analysis of 20 standard CO2 exposure experiments conducted over six years on Atlantic silverside (Menidia menidia) offspring.

Figure 1: Robust estimate of silverside CO2 sensitivity based on serial experimentation. (A, B) Mean CO2 effect size calculated as the log-transformed response ratio of six early life history traits measured at 20 standard experiments between 2012-2017 (Error: bootstrapped 95% confidence intervals). (C) Seasonal change in CO2 sensitivity in silverside early life stages. Each symbol represents an individual experiment, using offspring obtained by fertilizing wild spawners throughout their spring/summer spawning season.

Silversides are an abundant and ecologically important forage fish in the North Atlantic. The study revealed that during early life stages, Atlantic silversides tolerate pCO2 levels up to ~2,000 µatm, with seasonal shifts in sensitivity. However, this early exposure to high pCO2 levels reduces embryo survival by 9% and overall survival by 13% (Figure 1). Future ocean acidification could cause reduced survival of these and other forage fish, and thus impact their diverse marine predators, including seabirds and commercially important fish species. This sustained experimental work resulted in the most robustly constrained estimates of average CO2 effect sizes for a marine organism to date, demonstrating the utility of serial experimentation as a powerful tool for assessing organism responses to changing CO2.

 

Authors:
Hannes Baumann
Emma L. Cross
Chris S. Murray
(all University of Connecticut)

Rapid warming and salinity changes mask acidification in Gulf of Maine waters

Posted by mmaheigan 
· Wednesday, February 20th, 2019 

Why don’t we see ocean acidification in over a decade of high-frequency observations in the Gulf of Maine? The answer lies in a recent decade of changes that raised sea surface temperature and salinity, and in turn dampened the expected acidification signal and caused the saturation states of calcite minerals to increase. From 2004 to 2014, sea surface temperatures in the Gulf of Maine were higher than any observations recorded in the region over the past 150 years. This greatly impacted both CO2 solubility and the sea surface carbonate system, as detailed in a recent paper in Biogeochemistry.

Over the 34 years of the time-series, the recent event is extreme, but interannual and decadal salinity and temperature variability also influenced carbonate system parameters, which makes it difficult to isolate and quantify an anthropogenic ocean acidification signal, especially if relying on shorter-term observations (Figure 1).

Figure 1: Modeled ΩAragonite (top panel) and pH (bottom panel) anomalies relative to monthly 2004 data. The red lines show trends prior to and after 2004, after which warming accelerated.

For those with a stake in profiting from or managing extractive resources that are susceptible to ocean acidification such as commercially important lobster and bivalves, understanding how ecosystems will be affected is critical. These analyses clearly demonstrate how physical processes can either accelerate or mitigate ocean carbonate system changes, thus confounding the detection of ocean acidification that is expected from increasing atmospheric carbon dioxide. To assess whether an ecosystem or species is at risk or aided by such processes, it is important to observe, understand, and be able to model all sources of carbonate system variability.

Authors:
Joe Salisbury and Bror Jönsson (Both at Ocean Processes Analysis Laboratory, University of New Hampshire)

Long-term coastal data sets reveal unifying relationship between oxygen and pH fluctuations

Posted by mmaheigan 
· Thursday, June 7th, 2018 

Coastal habitats are critically important to humans, but without consistent and reliable observations we cannot understand the direction and magnitude of unfolding changes in these habitats. Environmental monitoring is therefore a prescient—yet still undervalued—societal service, and no effort better exemplifies this than the work conducted within the National Estuarine Research Reserve System (NERRS). NERRS is a network of 29 U.S. estuarine sites operated as a partnership between NOAA and the coastal states. NERRS has established a system-wide monitoring program with standardized instrumentation, protocols, and data reporting to guide consistent and comparable data collection across all NERRS sites. This has resulted in high-quality, comparable data on short- to long-term changes in water quality and biological systems to inform effective coastal zone management.

Figure 1: Using dissolved oxygen and salinity, monthly mean pH can be predicted within and across coastal systems due to the unifying metabolic coupling of oxygen and pH.

 

In a recent study published in Estuaries and Coasts, Baumann and Smith (2017) used a subset of this unique data set to analyze short- and long-term variability in pH and dissolved oxygen (DO) at 16 NERRS sites across the U.S. Atlantic, Caribbean, Gulf of Mexico, and Pacific coasts (> 5 million data points). They observed that large, metabolically driven fluctuations of pH and DO are indeed a unifying feature of nearshore habitats. Furthermore, mean pH or mean diel pH fluctuations can be predicted across habitats simply from salinity and oxygen levels/fluctuations (Fig.1). These results provide strong empirical evidence that common metabolic principles drive diel to seasonal pH and DO variations within and across a diversity of estuarine environments. As expected, the study did not yield interannual, monotonic trends in nearshore pH conditions; rather, interannual fluctuations were of similar magnitude to the pH decrease predicted for the average surface ocean over the next three centuries (Fig.2). Correlations of weekly anomalies of pH, oxygen, and temperature yielded strong empirical support for the hypothesis that coastal acidification—in addition to being driven by eutrophication and atmospheric CO2 increases—is exacerbated by warming, likely via increased community respiration.

Figure 2: Interannual variations in temperature, pH, and dissolved oxygen (DO) anomalies in 16 NERRS sites across the US Atlantic, Gulf of Mexico, Caribbean, and Pacific coasts.

Analyses of these long-term data sets have provided important insights on biogeochemical variability and underlying drivers in nearshore environments, highlighting the value and utility of long-term monitoring efforts like NERRS. Sustained, high-quality data sets in these nearshore environments are essential for the study of environmental change and should be prioritized by funding agencies. The observed metabolically driven pH and DO fluctuations suggest that local measures to reduce nutrient pollution can be an effective management tool in support of healthy coastal environments, a boon for both the habitats and humans.

 

Authors:
Hannes Baumann (University of Connecticut)
Erik M. Smith (North Inlet-Winyah Bay National Estuarine Research Reserve, University of South Carolina)

Unexpected acidification of deep waters in the Sea of Japan due to global warming

Posted by mmaheigan 
· Tuesday, May 22nd, 2018 

Oceans worldwide are warming up, and thermohaline circulation is expected to slow down. At the same time, ocean acidity is increasing due to the influx of anthropogenic carbon dioxide (CO2) from the atmosphere, a phenomenon called ocean acidification that has primarily been documented in shallow waters. In general, deeper waters contain less anthropogenic CO2, but predicted reductions in ventilation of deep waters may impact deep ocean chemistry, as described in a recent study in Nature Climate Change.

Figure caption: Secular trend of total scale pH at in-situ temperature and pressure at various depths between 1965 and 2015 in the Sea of Japan.

The Sea of Japan is a marginal sea with its own deep- and bottom-water formation that maintains relatively elevated oxygen levels. However, time-series data from 1965-2015 (the longest time-series available) reveal that oxygen concentrations in these deep waters are declining, indicating a reduction in ventilation that increases their residence time. As organic matter decomposition in these waters continues to accumulate more CO2, the pH decreases. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than at the surface. As a miniature ocean with its own deep- and bottom-water formation, the Sea of Japan provides insight into how future warming might alter deep-ocean ventilation and chemistry.

 

Authors:
Chen-Tung Arthur Chen (National SunYat-sen University, Taiwan and Second Institute of Oceanography, China)
Hon-Kit Lui (National SunYat-sen University and Taiwan Research Institute)
Chia-Han Hsieh (National SunYat-sen University, Taiwan)
Tetsuo Yanagi (International Environmental Management of Enclosed Coastal Seas Center, Japan)
Naohiro Kosugi (Japan Meterological Agency)
Masao Ishii (Japan Meterological Agency)
Gwo-Ching Gong (National Taiwan Ocean University)

Sensitivity of future ocean acidification to carbon-climate feedbacks

Posted by mmaheigan 
· Thursday, May 10th, 2018 

There are vast unknowns about the future oceans, from what species or habitats may be most under threat to the continuity of earth system processes that maintain global climate. Modeling can be used to predict future states and explore the impacts of climate change, but several key uncertainties such as carbon-climate feedbacks hamper our predictive power.

Authors of a recent study in Biogeosciences (Matear and Lenton 2018) used a global earth system model to explore the effects of carbon-climate feedbacks on future ocean acidification. Ocean acidification can have wide-ranging impacts on keystone species from reef-building corals to pteropods, a major food web species in the Southern Ocean. The study included four representative scenarios (from IPCC) comparing concentration pathway simulations to emission pathway simulations (RCP2.6, RCP 4.5, RCP6, RCP8.5) to determine carbon-climate feedbacks. The high emission scenarios (RCP8.5 and RCP6) showed surface water undersaturation a decade or more earlier than expected. Surprisingly, the medium (RCP4.5) scenario carbon-climate feedbacks showed the greatest acidification response, doubling the extent of undersaturation and subsequently halving the area that could sustain coral reefs by 2100. The low emissions scenario also showed significant declines in saturation state.

Surface ocean aragonite saturation state for the 2090s for RCP2.6 and RCP 8.5 concentration and emission pathways. The contour line delineates a saturation state of 3 (coral reef threshold), the white line a saturation state of 1, when aragonite becomes unstable and corals dissolve.

The extra atmospheric CO2 from the carbon-climate feedback resulted in accelerated ocean acidification in all emission scenarios. These feedbacks may also affect global warming and deoxygenation. This is particularly important, given that many policymakers are aiming for low emission commitments, but may still be severely underestimating the extent and timing of ocean acidification. There is a great need to improve our ability to predict carbon-climate feedbacks so we do not underestimate projected ocean acidification and its impacts on both sensitive ecosystems and the human communities that rely on them for food, coastal protection and other ecosystem services.

Authors:
Richard Matear (CSIRO Oceans and Atmosphere, Australia)
Andrew Lenton (Antarctic Climate and Ecosystems CRC, Australia)

International team of researchers reports ocean acidification is spreading rapidly in the western Arctic Ocean

Posted by mmaheigan 
· Thursday, March 30th, 2017 

The Arctic Ocean is particularly sensitive to climate change and ocean acidification such that aragonite saturation state is expected to become undersaturated (Ωarag <1) there sooner than in other oceans. However, the extent and expansion rate of ocean acidification (OA) in this region are still unknown.

In the March 2017 issue of Nature Climate Change, Qi et al. show that, between 1994 and 2010, low Ωarag waters have expanded northwards at least 5º, to 85ºN, and deepened from 100 m to 250 m depth. Data from multiple trans-western Arctic Ocean cruises show that Ωarag<1 water has increased in the upper 250 m from 5 to 31% of the total area north of 70ºN. Tracer data and model simulations suggest that increased transport of Pacific Winter Water (which is already acidified due to both natural and anthropogenic sources), driven by sea-ice retreat and the circulation changes, are primarily responsible for the expansion, while local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean, two to four times faster than the Pacific and Atlantic Oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of “acidified” water directly observed in the upper water column.

The rapid spread of ocean acidification in the western Arctic has implications for marine life, particularly clams, mussels and pteropods that may have difficulty building or maintaining their shells in increasingly acidified waters. The pteropods are part of the Arctic food web and important to the diet of salmon and herring. Their decline could affect the larger marine ecosystem.

Authors:
Richard A. Feely (NOAA Pacific Marine Environmental Laboratory)
Leif G. Anderson (Univ. of Gothenburg)
Heng Sun (SOA Third Institute of Oceanography)
Jianfang Chen (SOA Second Institute of Oceanography
Min Chen (Univ. of Delaware)
Liyang Zhan (SOA Third Institute of Oceanography)
Yuanhui Zhang (SOA Third Institute of Oceanography)
Wei-Jun Cai (Univ. of Delaware, Univ. of Georgia)

Filter by Keyword

abundance acidification africa air-sea interactions air-sea interface algae alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthropogenic carbon aquaculture aragonite saturation arctic arsenic Atlantic Atlantic modeling atmospheric carbon atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon sequestration carbon storage Caribbean CCA CCS changi changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemoautotroph chesapeake bay chl a chlorophyll circulation climate change CO2 CO2YS coastal darkening coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs CTD currents cyclone data data management data product Data standards DCM decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration dimethylsulfide dinoflagellate discrete measurements dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models ecology ecosystem state eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export EXPORTS extreme events extreme weather events faecal pellets filter feeders filtration rates fire fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forams freshening freshwater frontal zone fronts functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hurricane hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids mangroves marine carbon cycle marine heatwave marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixotrophy modeling mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP net community production new technology Niskin bottle nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean observatories ODZ oligotrophic omics OMZ open ocean optics organic particles overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC plankton POC polar regions pollutants predation prediction primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns sea spray seaweed sediments sensors shelf system shells ship-based observations shorelines silicate sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water quality western boundary currents wetlands winter mixing zooplankton

Copyright © 2022 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.