Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Future BioGeoSCAPES program
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Other Workshops
      • GO-BCG Scoping Workshop
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • Arctic-COLORS Data Synthesis
    • Carbon Isotopes in the Ocean Workshop
    • CMIP6 WG
      • CMIP6 Models Workshop
    • C-saw extreme events workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • OOI BGC sensor WG
    • Phytoplankton Taxonomy WG
    • Problem solving in marine carbon dioxide removal (mCDR)
      • Marine CDR Workshop
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for dimethylsulfide

Improved method to identify and reduce uncertainties in marine carbon cycle predictions

Posted by mmaheigan 
· Wednesday, September 26th, 2018 

Improved method to identify and reduce uncertainties in marine carbon cycle predictions

How well do contemporary Earth System Models (ESMs) represent the dynamics of the modern day ocean? Often we question the fidelity of biological and chemical processes represented in these ESMs. The fact is representations of biogeochemical processes in models are plagued with some degree of uncertainties; therefore, identifying and reducing such deficiencies could advance ESM development and improve model predictions.

An overview of several models with respect to each of the variables, using absolute (left) and relative (right) scores to determine the degree of uncertainty in relation to referenced datasets.

 

A recent publication in Atmosphere described the ongoing efforts to develop the International Ocean Model Benchmarking (IOMB) package to evaluate ESM skill sets in simulating marine biogeochemical variables and processes. Model performances were scored based on how well they captured the distribution and variability contained in high-quality observational datasets. The authors highlighted systematic model–data benchmarking as a technique to identify ocean model deficiencies, which could provide a pathway to improving representations of sub-grid-scale parameterizations. They have scaled the absolute score from zero to unity, where the red color tends toward zero to quantify weaknesses in the skill set of a particular model in capturing values from the observational datasets. On the other side of the spectrum, the green color signifies considerable temporal and spatial overlap between the predicted and the observational values. The authors also present the standard score to show the relative scores within two standard deviations from the model mean. The benchmarking package was employed in the published study to assess marine biogeochemical process representations, with a focus on surface ocean concentrations and sea–air fluxes of dimethylsulfide (DMS). The production and emission of natural aerosols remain one of the major limitations in estimating global radiative forcing. Appropriate representation of aerosols in the marine boundary layer (MBL) is essential to reduce uncertainty and provide reliable information on offsets to global warming. Results show that model–data biases increased as DMS enters the MBL, with models over-predicting sea surface concentrations in the productive region of the eastern tropical Pacific by almost a factor of two and the sea–air fluxes by a factor of three. The associated uncertainties with oceanic carbon cycle processes may be additive or antagonistic; in any case, a constructive effort to disentangle the subtleties begins with an objective benchmarking effort, which is focused specifically on marine biogeochemical processes. The tool in development will ensure we satisfy some of the Model Intercomparison Project (MIP) benchmarking needs for the sixth phase of Coupled Model Intercomparison Project (CMIP6).

 

Authors:
Oluwaseun Ogunro (ORNL)
Scott Elliott (LANL)
Oliver Wingenter (New Mexico Tech)
Clara Deal (University of Alaska)
Weiwei Fu (UC Irvine)
Nathan Collier (ORNL)
Forrest M. Hoffman (ORNL)

Filter by Keyword

abundance acidification africa air-sea interactions air-sea interface algae alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthropogenic carbon aquaculture aragonite saturation arctic arsenic Atlantic Atlantic modeling atmospheric carbon atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon sequestration carbon storage Caribbean CCA CCS changi changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemoautotroph chesapeake bay chl a chlorophyll circulation climate change CO2 CO2YS coastal darkening coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs CTD currents cyclone data data management data product Data standards DCM decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration dimethylsulfide dinoflagellate discrete measurements dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models ecology ecosystem state eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export EXPORTS extreme events extreme weather events faecal pellets filter feeders filtration rates fire fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forams freshening freshwater frontal zone fronts functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hurricane hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids mangroves marine carbon cycle marine heatwave marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixotrophy modeling mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP net community production new technology Niskin bottle nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean observatories ODZ oligotrophic omics OMZ open ocean optics organic particles overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC plankton POC polar regions pollutants predation prediction primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns sea spray seaweed sediments sensors shelf system shells ship-based observations shorelines silicate sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water quality western boundary currents wetlands winter mixing zooplankton

Copyright © 2022 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.