Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Project Office
    • Scientific Steering Committee
    • OCB Subcommittees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Get Involved
  • Activities
    • Summer Workshops
    • Scoping Workshops
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • CMIP6 Working Group
        • CMIP6 Models Workshop
      • Fish Carbon Working Group
        • Fish Carbon WG Workshop
        • Fish carbon workshop summary
      • Lateral Carbon Flux in Tidal Wetlands
      • Metaproteomic Intercomparison
      • N-Fixation Working Group
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake Working Groups
      • Ocean Nucleic Acids ‘Omics
      • Phytoplankton Taxonomy Working Group
    • Ocean Acidification PI Meetings
    • Training Activities
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs and Postdocs
    • Meeting Calendar
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for prediction

Predicting marine ecosystem futures

Posted by mmaheigan 
· Wednesday, September 4th, 2019 

Earth System Models (ESMs) are powerful and effective tools for exploring and predicting marine ecosystem response to environmental change, including biogeochemical processes that underlie threats to ocean health such as ocean acidification, deoxygenation, and changes in productivity. Seasonal to interannual marine biogeochemical predictions with ESMs hold great promise for exploring links between climate and marine resources such as fisheries but have thus far been challenged by limitations associated with observational initialization, model structure, and computational availability. In a recent study published in Science, authors integrated the Geophysical Fluid Dynamics Laboratory’s (GFDL) COBALT (Carbon, Ocean Biogeochemistry and Lower Trophics) marine biogeochemical model with seasonal to multi-annual climate predictions from GFDL’s CM2.1 climate model to examine marine ecosystem futures on these shorter time scales. The global biogeochemical forecasts were initialized on the first of each month between 1991 and 2017 with 12 ensemble members in each prediction, creating a database of nearly 4000 forecasts and 8000 simulation years. The model skillfully predicted seasonal to multi-annual chlorophyll fluctuations in many ocean regions (Figure 1).

 

Figure 1: Prediction skill in reproducing observed variations of monthly chlorophyll anomaly. (Top) Correlation coefficient between predicted and observed chlorophyll at 1-3 month lead time during the period 1997-2017. Stippled areas indicate that the correlation is significantly greater than 0 with 95% confidence. Areas with less than 80% satellite chlorophyll coverage are masked in grey. (Lower panels) Correlation coefficient between predicted and observed chlorophyll as a function of forecast initialization month (x-axis) and lead time (y-axis) in tropical Pacific, Indian, North Atlantic, North Pacific, and South Pacific oceans. In all panels, the darker the red, the higher the correlation up to a perfect correlation of 1.0. White indicates no correlation, while blue indicates negative correlation.

These results suggest that annual fish catches in selected large marine ecosystems can be predicted from chlorophyll and sea surface temperature anomalies up to 2-3 years in advance. Given that fisheries predictions sometimes failed to the point of commercial stock collapse in the past, this prediction capacity could be vital for fisheries managers. Biogeochemical prediction systems can extend beyond sea surface temperature and chlorophyll to include other potential drivers (e.g., oxygen, acidity, net primary production, zooplankton, etc.) as highly valuable tools for marine resource managers of dynamic and changing ecosystems.

Authors:
Jong-Yeon Park (Princeton Univ, NOAA GDFL, Chonbuk National Univ., Korea)
Charles A. Stock, John P. Dunne, Xiaosong Yang, and Anthony Rosati (NOAA GFDL)

Filter by Keyword

acidification air-sea interactions allometry AMOC Antarctica anthropogenic carbon aragonite saturation aragonite saturation state arctic argo arsenic Atlantic Atlantic modeling atmospheric CO2 atmospheric nitrogen deposition autonomous observing autonomous platforms BATS bcg-argo biogeochemical cycles biogeochemical models biological pump biological uptake biophysics bloom blooms blue carbon bottom water CaCO3 calcification calcite carbon-climate feedback carbon cycle carbon sequestration Caribbean CCS changing marine ecosystems changing ocean chemistry chemoautotroph chl a chlorophyll circulation climate change CO2 coastal and estuarine coastal carbon fluxes coastal ocean coastal oceans cobalt community composition conservation cooling effect copepod coral reefs currents DCM deep convection deep ocean deep sea coral diatoms DIC dimethylsulfide DOC domoic acid dust earth system models eddy Education Ekman transport emissions ENSO enzyme equatorial regions estuarine and coastal carbon fluxes estuary EXPORTS filter feeders filtration rates fish Fish carbon fisheries floats fluid dynamics fluorescence food web food webs forams freshening geochemistry geoengineering GEOTRACES glaciers gliders global carbon budget global warming go-ship greenhouse gas Greenland Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human impact hydrothermal hypoxia ice age ice ages ice cores ice cover industrial onset iron iron fertilization isotopes katabatic winds kelvin waves kuroshio larvaceans lateral transport lidar ligands mangroves marine boundary layer marine snowfall marshes meltwater mesopelagic mesoscale metagenome metals methane microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixotrophy modeling models mode water formation molecular diffusion MPT multi-decade NASA net community production new technology nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient flux nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean carbon uptake and storage ocean color ocean observatories ODZ oligotrophic omics OMZ open ocean organic particles overturning circulation oxygen pacific pacific ocean paleoceanography particle flux particulate organic carbon pCO2 PDO pH phosphorus photosynthesis physical processes physiology phytoplankton plankton POC polar regions pollutants prediction primary production primary productivity pteropods radioisotopes remineralization remote sensing residence time respiration rivers Rossby waves Ross Sea ROV salinity salt marsh satellite scale seagrass sea ice sea level rise seasonal patterns sediments sensors shelf system ship-based observations sinking particles size SOCCOM southern ocean south pacific speciation species oscillations subduction submesoscale subpolar subtropical subtropical gyres subtropical mode water surface ocean teleconnections temperature thermohaline thorium tidal time-series time of emergence top predators trace element trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport vertical transport/flux western boundary currents wetlands winter mixing zooplankton

Copyright © 2019 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.