Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
      • GO-BGC Webinar Series
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
        • Fish Carbon WG Workshop
        • Fish carbon workshop summary
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for calcite

What really controls deep-seafloor calcite dissolution?

Posted by mmaheigan 
· Monday, December 16th, 2019 

On time scales of tens to millions of years, seawater acidity is primarily controlled by biogenic calcite (CaCO3) dissolution on the seafloor. Our quantitative understanding of future oceanic pH and carbonate system chemistry requires knowledge of what controls this dissolution. Past experiments on the dissolution rate of suspended calcite grains have consistently suggested a high-order, nonlinear dependence on undersaturation that is independent of fluid flow rate. This form of kinetics has been extensively adopted in models of deep-sea calcite dissolution and pH of benthic sediments. However, stirred-chamber and rotating-disc dissolution experiments have consistently demonstrated linear kinetics of dissolution and a strong dependence on fluid flow velocity. This experimental discrepancy surrounding the kinetic control of seafloor calcite dissolution precludes robust predictions of oceanic response to anthropogenic acidification.

In a recent study published in Geochimica et Cosmochimica Acta, authors have reconciled these divergent experimental results through an equation for the mass balance of the carbonate ion at the sediment-water interface (SWI), which equates the rate of production of that ion via dissolution and its diffusion in sediment porewaters to the transport across the diffusive sublayer (DBL) at the SWI. If the rate constant derived from suspended-grain experiments is inserted into this balance equation, the rate of carbonate ion supply to the SWI from the sediment (sediment-side control) is much greater in the oceans than the rate of transfer across the DBL (water-side control). Thus, calcite dissolution at the seafloor, while technically under mixed control, is strongly water-side dominated. Consequently, a model that neglects boundary-layer transport (sediment-side control alone) invariably predicts CaCO3-versus-depth profiles that are too shallow compared to available data (Figure 1). These new findings will inform future attempts to model the ocean’s response to acidification.

Figure 1: Plots of the calcite (CaCO3) content of deep-sea sediments as a function of oceanic depth. Left panel: data from the Northwestern Atlantic Ocean. Right panel: data from the Southwest Pacific Ocean. The blue line represents predicted CaCO3 content assuming no boundary-layer effects (pure sediment-side control). The red line is the prediction that includes both sediment and water effects (mixed control), and the green line is the prediction with pure water-side control. The agreement between the red and green lines signifies that calcite dissolution is essentially water-side controlled at the seafloor. These results are duplicated for all tested regions of the oceans.

Authors:
Bernard P. Boudreau (Dalhousie University)
Olivier Sulpis (University of Utrecht)
Alfonso Mucci (McGill University)

Microbes: Gatekeepers of earth’s deep carbon?

Posted by mmaheigan 
· Tuesday, May 14th, 2019 

In 2017, an interdisciplinary group of early career scientists, the Biology Meets Subduction team, visited Costa Rica’s subduction zone, where the ocean floor sinks beneath the continent, to find out if subterranean microbes affect geological processes that move carbon from Earth’s surface into the deep interior.

Using carbon and helium isotope measurements of water and nearby sediments from geothermal springs in northern and central Costa Rica, the study published recently in Nature demonstrated that microbes consume and trap a small but measurable amount of the carbon sinking into the trench off Costa Rica’s Pacific coast. The microbes may also be involved in chemical processes that pull out even more carbon, leaving cement-like veins of calcite in the crust.

Figure 1: Schematic of deep carbon cycle subduction at the forearc region and into the mantle.

The team discovered that low temperatures in the forearc support microbial life and water-rock interactions that divert the down-going carbon from the subducting slab and trap it in the crust. The study estimates that about 94 percent of that redirected carbon transforms into calcite minerals and microbial biomass.

Figure 2: Biofilm in a natural seep in Costa Rica. Credit: Peter Barry.

These unexpected findings have important implications for how much carbon moves from Earth’s surface into the interior, especially over geological timescales. If these biological and geochemical processes occur worldwide, they would translate to 19% less carbon entering the deep mantle than previously estimated.

Authors:
PH Barry
JM de Moor
D Giovannelli
M Schrenk
D Hummer
T Lopez
CA Pratt
Y Alpízar Segura
A Battaglia
P Beaudry
G Bini
M Cascante
G d’Errico

M di Carl
D Fattorini
K Fullerton
E Gazel
G González
SA Halldórsson
K Iacovino
JT Kulongoski
E Manini
M Martínez
H Miller
M Nakagawa
S Ono

S Patwardhan
CJ Ramírez
F Regoli
F Smedile
S Turner
C Vetriani
M Yücel
CJ Ballentine
TP Fischer
DR Hilton
KG Lloyd

Filter by Keyword

abundance acidification africa air-sea interactions algae alkalinity allometry ammonium AMOC anoxic Antarctic anthro impacts anthropogenic carbon aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon export carbon sequestration carbon storage Caribbean CCA CCS changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation climate change climate variability CO2 coastal darkening coastal ocean cobalt Coccolithophores commercial community composition conservation cooling effect copepod coral reefs CTD currents cyclone daily cycles data data access data assimilation data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate discrete measurements DOC DOM domoic acid dust DVM ecology ecosystem management ecosystems eddy Education Ekman transport emissions ENSO enzyme equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production EXPORTS extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixing mixotrophy model modeling model validation mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific nuclear war nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation overturning circulation oxygen pacific paleoceanography parameter optimization particle flux partnerships pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar regions policy pollutants precipitation predation prediction pressure primary productivity Prochlorococcus prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors shelf ocean shelf system shells ship-based observations shorelines silicate silicon cycle sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water mass water quality waves western boundary currents wetlands winter mixing zooplankton

Copyright © 2023 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.