Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • CMIP6 WG
      • CMIP6 Models Workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • Phytoplankton Taxonomy WG
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for satellite

Water clarity impacts temperature and biogeochemistry in Chesapeake Bay

Posted by mmaheigan 
· Thursday, December 3rd, 2020 

Estuarine water clarity is determined by suspended materials in the water, including colored dissolved organic matter, phytoplankton, sediment, and detritus. These constituents directly affect temperature because when water is opaque, sunlight heats only the shallowest layers near the surface, but when water is clear, sunlight can penetrate deeper, warming the waters below the surface. Despite the importance of accurately predicting temperature variability, many numerical modeling studies do not adequately parameterize this fundamental relationship between water clarity and temperature.

In a recent study published in Estuaries and Coasts, the authors quantified the impact of a more realistic representation of water clarity in a hydrodynamic-biogeochemical model of the Chesapeake Bay by comparing two simulations: (1) water clarity is constant in space and time for the calculation of solar heating vs. (2) water clarity varies with modeled concentrations of light-attenuating materials. In the variable water clarity simulation (2), the water is more opaque, particularly in the northern region of the Bay. During the spring and summer months, the lower water clarity in the northern Bay is associated with warmer surface temperatures and colder bottom temperatures. Warmer surface temperatures encourage phytoplankton growth and nutrient uptake near the head of the Bay, thus fewer nutrients are transported downstream. These conditions are exacerbated during high-river flow years, when differences in temperature, nutrients, phytoplankton, and zooplankton extend further seaward.

Figure 1: Top row: Difference in the light attenuation coefficient for shortwave heating, kh[m-1] (variable minus constant light attenuation simulation). June, July, and August average for (A) 2001, (B) average of 2001-2005, and (C) 2003; difference in bottom temperatures [oC] (variable minus constant). Bottom row: Difference in June, July, and August average bottom temperature for (D) 2001, (E) average of 2001-2005, and (F) 2003. Data for 2001 are representative of low river discharge, and 2003 are representative high river discharge years.

This work demonstrates that a constant light attenuation scheme for heating calculations in coupled hydrodynamic-biogeochemical models underestimates temperature variability, both temporally and spatially. This is an important finding for researchers who use models to predict future temperature variability and associated impacts on biogeochemistry and species habitability.

 

Authors:
Grace E. Kim (NASA, Goddard Space Flight Center)
Pierre St-Laurent (VIMS, William & Mary)
Marjorie A.M. Friedrichs (VIMS, William & Mary)
Antonio Mannino (NASA, Goddard Space Flight Center)

Tiny phytoplankton seen from space

Posted by mmaheigan 
· Thursday, November 19th, 2020 

Picophytoplankton, the smallest phytoplankton on Earth, are dominant in over half of the global surface ocean, growing in low-nutrient “ocean deserts” where diatoms and other large phytoplankton have difficult to thrive. Despite their small size, picophytoplankton collectively account for well over 50% of primary production in oligotrophic waters, thus playing a major role in sustaining marine food webs.

In a recent paper published in Optics Express, the authors use satellite-detected ocean color (namely remote-sensing reflectance, Rrs(λ)) and sea surface temperature to estimate the abundance of the three picophytoplankton groups—the cyanobacteria Prochlorococcus and Synechococcus, and autotrophic picoeukaryotes. The authors analysed Rrs(λ) spectra using principal component analysis, and principal component scores and SST were used in the predictive models. Then, they trained and independently evaluated the models with in-situ data from the Atlantic Ocean (Atlantic Meridional Transect cruises). This approach allows for the satellite detection of the succession of species across ocean oligotrophic ecosystem boundaries, where these cells are most abundant (Figure 1).

Figure 1. Cell abundances of the three major picophytoplankton groups (the cyanobacteria Prochlorococcus and Synechococcus, and a collective group of autotrophic picoeukaryotes) in surface waters of the Atlantic Ocean. Abundances are shown for the dominant group in terms of total biovolume (converted from cell abundance).

Since these organisms can be used as proxies for marine ecosystem boundaries, this method can be used in studies of climate and ecosystem change, as it allows a synoptic observation of changes in picophytoplankton distributions over time and space. For exploring spectral features in hyperspectral Rrs(λ) data, the implementation of this model using data from future hyperspectral satellite instruments such as NASA PACE’s Ocean Color Instrument (OCI) will extend our knowledge about the distribution of these ecologically relevant phytoplankton taxa. These observations are crucial for broad comprehension of the effects of climate change in the expansion or shifts in ocean ecosystems.

 

Authors:
Priscila K. Lange (NASA Goddard Space Flight Center / Universities Space Research Association / Blue Marble Space Institute of Science)
Jeremy Werdell (NASA Goddard Space Flight Center)
Zachary K. Erickson (NASA Goddard Space Flight Center)
Giorgio Dall’Olmo (Plymouth Marine Laboratory)
Robert J. W. Brewin (University of Exeter)
Mikhail V. Zubkov (Scottish Association for Marine Science)
Glen A. Tarran (Plymouth Marine Laboratory)
Heather A. Bouman (University of Oxford)
Wayne H. Slade (Sequoia Scientific, Inc)
Susanne E. Craig (NASA Goddard Space Flight Center / Universities Space Research Association)
Nicole J. Poulton (Bigelow Laboratory for Ocean Sciences)
Astrid Bracher (Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research / University of Bremen)
Michael W. Lomas (Bigelow Laboratory for Ocean Sciences)
Ivona Cetinić (NASA Goddard Space Flight Center / Universities Space Research Association)

 

Profiling floats reveal fate of Southern Ocean phytoplankton stocks

Posted by mmaheigan 
· Tuesday, September 1st, 2020 

More observations are needed to constrain the relative roles of physical (advection), biogeochemical (downward export), and ecological (grazing and biological losses) processes in driving the fate of phytoplankton blooms in Southern Ocean waters. In a recent paper published in Nature Communications, authors used seven Biogeochemical Argo (BGC-Argo) floats that vertically profiled the upper ocean every ten days as they drifted for three years across the remote Sea Ice Zone of the Southern Ocean. Using the floats’ biogeochemical sensors (chlorophyll, nitrate, and backscattering) and regional ratios of nitrate consumption:chlorophyll synthesis, the authors developed a new approach to remotely estimate the fate of the phytoplankton stocks, enabling calculations of herbivory and of downward carbon export. The study revealed that the major fate of phytoplankton biomass in this region is grazing, which consumes ~90% of stocks. The remaining 10% is exported to depth. This pattern was consistent throughout the entire sea ice zone where the floats drifted, from 60°-69° South.

Figure Caption: Southern Ocean Chlorophyll a climatology and floats’ trajectories (top panel). Total losses of Chlorophyll a (including grazing and phytodetritus export, left panel). Phytodetritus export (right panel).

 

This study region comprises two of the three major krill growth and development areas—the eastern Weddell and King Haakon VII Seas and Prydz Bay and the Kerguelen Plateau—so the observed grazing was probably due to Antarctic krill, underscoring their pivotal importance in this ecosystem. Building upon the greater understanding of ocean ecosystems via satellite ocean colour development in the 1990s, BGC-Argo floats and this new approach will allow remote monitoring of the different fates of phytoplankton stocks and insights into the status of the ecosystem.

 

Authors:
Sebastien Moreau (Norwegian Polar Institute, Tromsø, Norway)
Philip Boyd (Institute for Marine and Antarctic Studies, Hobart, Australia)
Peter Strutton (Institute for Marine and Antarctic Studies, Hobart, Australia)

A close-up view of biomass controls in Southern Ocean eddies

Posted by mmaheigan 
· Thursday, August 20th, 2020 

Southern Ocean biological productivity is instrumental in regulating the global carbon cycle. Previous correlative studies associated widespread mesoscale activity with anomalous chlorophyll levels. However, eddies simultaneously modify both the physical and biogeochemical environments via several competing pathways, making it difficult to discern which mechanisms are responsible for the observed biological anomalies within them. Two recently published papers track Southern Ocean eddies in a global, eddy-resolving, 3-D ocean simulation. By closely examining eddy-induced perturbations to phytoplankton populations, the authors are able to explicitly link eddies to co-located biological anomalies through an underlying mechanistic framework.

Figure caption: Simulated Southern Ocean eddies modify phytoplankton division rates in different directions of depending on the polarity of the eddy and background seasonal conditions. During summer anticyclones (top right panel) deliver extra iron from depth via eddy-induced Ekman pumping and fuel faster phytoplankton division rates. During winter (bottom right panel) the extra iron supply is eclipsed by deeper mixed layer depths and elevated light limitation resulting in slower division rates. The opposite occurs in cyclones.

In the first paper, the authors observe that eddies primarily affect phytoplankton division rates by modifying the supply of iron via eddy-induced Ekman pumping. This results in elevated iron and faster phytoplankton division rates in anticyclones throughout most of the year. However, during deep mixing winter periods, exacerbated light stress driven by anomalously deep mixing in anticyclones can dominate elevated iron and drive division rates down. The opposite response occurs in cyclones.

The second paper tracks how eddy-modified division rates combine with eddy-modified loss rates and physical transport to produce anomalous biomass accumulation. The biomass anomaly is highly variable, but can exhibit an intense seasonal cycle, in which cyclones and anticyclones consistently modify biomass in different directions. This cycle is most apparent in the South Pacific sector of the Antarctic Circumpolar Current, a deep mixing region where the largest biomass anomalies are driven by biological mechanisms rather than lateral transport mechanisms such as eddy stirring or propagation.

It is important to remember that the correlation between chlorophyll and eddy activity observable from space can result from a variety of physical and biological mechanisms. Understanding the nuances of how these mechanisms change regionally and seasonally is integral in both scaling up local observations and parameterizing coarser, non-eddy resolving general circulation models with embedded biogeochemistry.

Authors:
Tyler Rohr (Australian Antarctic Partnership Program, previously at MIT/WHOI)
Cheryl Harrison (University of Texas Rio Grande Valley)
Matthew Long (National Center for Atmospheric Research)
Peter Gaube (University of Washington)
Scott Doney (University of Virginia)

Chasing Sargassum in the Atlantic Ocean

Posted by mmaheigan 
· Wednesday, March 25th, 2020 

The pelagic brown alga Sargassum forms a habitat that hosts a rich diversity of life, including other algae, crustaceans, fish, turtles, and birds in both the Gulf of Mexico and the area of the Atlantic Ocean known as the Sargasso Sea. However, high abundances of Sargassum have been appearing in the tropical Atlantic, in some cases 3,000 miles away from the Sargasso Sea. This is a new phenomenon. Nearly every year since 2011, thick mats of Sargassum have blanketed the coastlines of many countries in tropical Africa and the Americas. When masses of Sargassum wash ashore, the seaweed rots, attracts insects, and repels beachgoers, with adverse ecological and socioeconomic effects. A new study in Progress in Oceanography sheds light on the mystery.

Figure 1. The hypothesized route of Sargasso Sea Sargassum to the tropical Atlantic and the Caribbean Sea. The solid black lines indicate the climatological surface flow, the dashed black lines indicate areas where there was variability from the average conditions.

The authors analyzed reams of satellite data and used computer models of the Earth’s winds and ocean currents to try to understand why these large mats started to arrive in coastal areas in 2011. A strengthening and southward shift of the westerlies in the winter of 2009-2010 caused ocean currents to move the Sargassum toward the Iberian Peninsula, then southward in the Canary Current along Africa, where it entered the tropics by the middle of 2010 (Figure 1). The tropical Atlantic provided ample sunlight, warmer sea temperatures, and nutrients for the algae to flourish. In 2011, Sargassum spread across the entire tropical Atlantic in a massive belt north of the Equator, along the Intertropical Convergence Zone (ITCZ), and these blooms have appeared nearly every year since. Utilizing international oceanographic studies done in the Atlantic since the 1960s, and multiple satellite sensors combined with Sargassum distribution patterns, the authors discovered that the trade winds aggregate the Sargassum under the ITCZ and mix the water deep enough to bring new nutrients to the surface and sustain the bloom.

Improved understanding and predictive capacity of Sargassum bloom occurrence will help us better constrain and quantify its impacts on our ecosystems, which can inform management of valuable fisheries and protected species.

 

Authors:
Elizabeth Johns (NOAA AMOL)
Rick Lumpkin (NOAA AMOL)
Nathan Putman (LGL Ecological Research Associates)
Ryan Smith (NOAA AMOL)
Frank Muller-Karger (University of South Florida)
Digna Rueda-Roa (University of South Florida)
Chuanmin Hu (University of South Florida)
Mengqiu Wang (University of South Florida)
Maureen Brooks (University of Maryland Center for Environmental Science)
Lewis Gramer (NOAA AMOL and University of Miami)
Francisco Werner (NOAA Fisheries)

A new tidal non-photochemical quenching model reveals obscured variability in coastal chlorophyll fluorescence

Posted by mmaheigan 
· Tuesday, October 15th, 2019 

Although chlorophyll fluorescence is widely-used as a proxy for chlorophyll concentration, sunlight exposure makes fluorescence measurements inaccurate through a process called non-photochemical quenching, limiting its proxy accuracy during daylight hours. In the open ocean, where time and space scales are large relative to variability in phytoplankton concentration, daytime chlorophyll fluorescence—necessary for satellite algorithm validation and for understanding diurnal variability in phytoplankton abundance—can be estimated by averaging across successive nighttime, unquenched values. In coastal waters, where semidiurnal tidal advection drives small scale patchiness and short temporal variability, successive nighttime observations do not accurately represent the intervening daytime. Thus, it is necessary to apply a non-photochemical quenching correction that accounts for the additional effect of tidal advection.

In a recent study in L&O Methods, authors developed a model that uses measurements of tidal velocity to correct daytime chlorophyll fluorescence for non-photochemical quenching and tidal advection. The model identifies high tide and low tide endmember populations of phytoplankton from tidal velocity, and estimates daytime chlorophyll fluorescence as a conservative interpolation between endmember fluorescence at those tidal maxima and minima (Figure 1). Rather than removing nearly 12 hours’ worth of hourly chlorophyll fluorescence observations (i.e., all of the daytime observations) as was previously necessary, this model recovers them. The model output performs more accurately as a proxy for chlorophyll concentration than raw daytime chlorophyll fluorescence measurements by a factor of two, and enables tracking of phytoplankton populations with chlorophyll fluorescence in a Lagrangian sense from Eulerian measurements. Finally, because the model assumes conservation, periods of non-conservative variability are revealed by comparison between model and measurements, helping to elucidate controls on variability in phytoplankton abundance in coastal waters.

Figure 1: Model (light blue line) is a tidal interpolation between high tide (blue points) and low tide (red points) phytoplankton endmembers. The model represents nighttime, unquenched chlorophyll fluorescence measurements well (black points), while daytime, quenched measurements are visibly reduced (gray points).

This result is a critical achievement, as it enables the use of daytime chlorophyll fluorescence, which increases the temporal resolution of coastal chlorophyll fluorescence measurements, and also provides a mechanism for satellite validation of the ocean color chlorophyll data product in coastal waters. The model’s capacity to accurately simulate the pervasive effect of non-photochemical quenching makes it a vital tool for any researcher or coastal water manager measuring chlorophyll fluorescence. This model will help to provide new insights on the movement of and controls on phytoplankton populations across the land-ocean continuum.

Authors:
Luke Carberry (University of California, Santa Barbara)
Collin Roesler (Bowdoin College)
Susan Drapeau (Bowdoin College)

 

Upwelled hydrothermal Fe stimulates massive phytoplankton blooms in the Southern Ocean

Posted by mmaheigan 
· Tuesday, July 9th, 2019 

Joint feature with GEOTRACES

Figure 1a: Southern Ocean phytoplankton blooms showing distribution, biomass (circle size) and type (color key).

In a recent study, Ardyna et al combined observations of profiling floats with historical trace element data and satellite altimetry and ocean color data from the Southern Ocean to reveal that dissolved iron of hydrothermal origin can be upwelled to the surface. Furthermore, the activity of deep hydrothermal sources can influence upper ocean biogeochemical cycles of the Southern Ocean, and in particular stimulate the biological carbon pump.

Authors:
Mathieu Ardyna
Léo Lacour
Sara Sergi
Francesco d’Ovidio
Jean-Baptiste Sallée
Mathieu Rembauville
Stéphane Blain
Alessandro Tagliabue
Reiner Schlitzer
Catherine Jeandel
Kevin Robert Arrigo
Hervé Claustre

Ocean color offers early warning signal of climate change’s impact on marine phytoplankton

Posted by mmaheigan 
· Monday, April 15th, 2019 

Marine phytoplankton form the foundation of the marine food web and play a crucial role in the earth’s carbon cycle. Typically, satellite-derived Chlorophyll a (Chl a) is used to evaluate trends in phytoplankton. However, it may be many decades (or longer) before we see a statistically significant signature of climate change in Chl a due to its inherently large natural variability. In a recent study in Nature Communications, authors explored how other metrics, in particular the color of the ocean, may show earlier and stronger signals of climate change at the base of the marine food web.

Figure 1. Computer model results indicating the year in which the signature of climate change impact is larger than the natural variability for (a) Chl a, and (b) remotely sensed reflectance in the blue-green waveband. White areas indicate where there is not a statistically significant change by 2100, or for regions that are currently ice-covered.

 

In this study, the authors use a unique marine physical-biogeochemical and ecosystem model that also captures how light penetrates the ocean and is reflected upward. The model shows that over the course of the 21st century, remote sensing reflectance (RRS, the ratio of upwelling radiance to the downwelling irradiance at the ocean’s surface) in the blue-green portions of the light spectrum is likely to have an earlier, more spatially extensive climate change-driven signal than Chl a (Figure 1). This is because RRS integrates not only changes to Chl a, but also alterations in other optically important water constituents. In particular, RRS also captures changes in phytoplankton community structure, which strongly affects ocean optics and is likely to be altered over the 21st century. Monitoring the response of marine phytoplankton to climate change is important for predicting changes at higher trophic levels, including commercial fisheries. Our study emphasizes the importance of 1) maintaining ocean color sensor compatibility and long-term stability, particularly in the blue-green wavebands; 2) maintaining long-term in situ time-series of plankton communities – e.g., the Continuous Plankton Recorder survey and repeat stations (e.g., HOT, BATS); and 3) reducing uncertainties in satellite-derived phytoplankton community structure estimates.

 

Authors:
Stephanie Dutkiewicz, Oliver Jahn (Massachusetts Institute of Technology)
Anna E. Hickman (University of Southampton)
Stephanie Henson (National Oceanography Centre Southampton)
Claudie Beaulieu (University of California, Santa Cruz)
Erwan Monier (University of California, Davis)

Dramatic Increase in Chlorophyll-a Concentrations in Response to Spring Asian Dust Events in the Western North Pacific

Posted by mmaheigan 
· Tuesday, October 23rd, 2018 

According to Martin’s iron hypothesis, input of aeolian dust into the ocean environment temporarily relieves iron limitation that suppresses primary productivity. Asian dust events that originate in the Taklimakan and Gobi Deserts occur primarily in the spring and represent the second largest global source of dust to the oceans. The western North Pacific, where productivity is co-limited by nitrogen and iron, is located directly downwind of these source regions and is therefore an ideal location for determining the response of open water primary productivity to these dust input events.

Figure 1. Daily aerosol index values (black squares) and chlorophyll-a concentrations (mg m-3, circles) during the spring (a) 2010 (weak dust event), (b) 1998 (strong dust event) in the western North Pacific. Color scale represents difference between mixed layer depth (MLD) and isolume depth (Z0.054) that indicates conditions for typical spring blooms; water column structures of MLD and isolume were identical in the spring of 1998 and 2010. Dramatic increases in chlorophyll-a (pink shading, maximum of 5.3 mg m-3) occurred in spring 1998 with a lag time of ~10 days after the strong dust event (aerosol index >2.5) on approximately April 20 compared to constant chlorophyll-a values (<2 mg m-3) in the spring of 2010.

A recent study in Geophysical Research Letters included an analysis of the spatial dynamics of spring Asian dust events, from the source regions to the western North Pacific, and their impacts on ocean primary productivity from 1998 to 2014 (except for 2002–2004) using long-term satellite observations (daily aerosol index data and chlorophyll-a). Geographical aerosol index distributions revealed three different transport pathways supported by the westerly wind system: 1) Dust moving predominantly over the Siberian continent (>50°N); 2) Dust passing across the northern East/Japan Sea (40°N‒50°N); and 3) Dust moving over the entire East/Japan Sea (35°N‒55°N). The authors observed that strong dust events could increase ocean primary productivity by more than 70% (>2-fold increase in chlorophyll-a concentrations, Figure 1) compared to weak/non-dust conditions. This result suggests that spring Asian dust events, though episodic, may play a significant role in driving the biological pump, thus sequestering atmospheric CO2 in the western North Pacific.

Another recent study reported that anthropogenic nitrogen deposition in the western North Pacific has significantly increased over the last three decades (i.e. relieving nitrogen limitation), whereas this study indicated a recent decreasing trend in the frequency of spring Asian dust events (i.e. enhancing iron limitation). Further investigation is required to fully understand the effects of contrasting behavior of iron (i.e., decreasing trend) and nitrogen (i.e., increasing trend) inputs on the ocean primary productivity in the western North Pacific, paying attention on how the marine ecosystem and biogeochemistry will respond to the changes.

 

Authors:
Joo-Eun Yoon (Incheon National University)
Il-Nam Kim (Incheon National University)
Alison M. Macdonald (Woods Hole Oceanographic Institution)

Updates and Plans for the First EXPORTS Field Campaign

Posted by mmaheigan 
· Thursday, February 1st, 2018 

Contacts: David Siegel (UCSB; EXPORTS Science Lead) & Ivona Cetinić (NASA GSFC/USRA; EXPORTS Project Scientist)

 

EXPORTS in a Nutshell

Ocean ecosystems constitute a significant fraction of the world’s primary production, fixing CO2 and creating oxygen while playing critical roles in sequestering CO2 from the atmosphere. An improved understanding of the cycling and fate of oceanic organic carbon will not only allow for better prediction of how these processes may change in the future, but it will help underpin the societal value of these ocean ecosystem services. The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign aims to provide answers to these questions.

The goal of EXPORTS is to develop a predictive understanding of the export and fate of global ocean net primary production (NPP) and its implications for the Earth’s carbon cycle in present and future climates (oceanexports.org). To develop this quantitative understanding, EXPORTS will measure and model the export pathways that remove fixed organic carbon from the upper ocean and drive the attenuation of these vertical fluxes within the ocean interior. EXPORTS datasets will be used to develop and test numerical predictive and satellite-data diagnostic models of NPP fates and their carbon cycle impacts. EXPORTS builds on decades of NASA-funded research on developing and validating satellite data-driven models of regional to global NPP and hence, EXPORTS will contribute to NASA’s upcoming Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) mission.

 

A Brief History of EXPORTS

The NASA EXPORTS field campaign is the result of an initial open competition in 2012 by the NASA Ocean Biology and Biogeochemistry (OBB) Program to identify scoping workshops for future field campaigns. This was followed by many years of committee-based planning, community vetting of science and implementation plans, and final peer review.  The NASA EXPORTS Science and Implementation Plans were made publicly available by the NASA OBB program. In February 2016, the National Science Foundation held the Biology of the Biological Pump (BoBP) workshop aimed in part to leverage NASA’s planned investment in the EXPORTS field program. In August 2016, NASA announced it would support data mining and observational system simulation experiment (OSSE) projects to help with planning the NASA EXPORTS field campaign and five projects were funded under this pre-EXPORTS call.

In early 2017, NASA released a call for proposals for the EXPORTS field program and the competition for inclusion on the NASA EXPORTS Science Team and its leadership. The call also included the implementation approach for the EXPORTS field program, with two major cruises to collect in situ data, followed by a synthesis and analysis phase to be competed in the future. At the same time, NSF released a Dear Colleague Letter (DCL) stating they would consider proposals that leveraged the NASA investment with objectives that supported the BoBP plan. From the NASA competition, 11 projects were selected for support (Table 1). Three NSF proposals have been recommended for support (at the time of this writing, the awarding of these grants is not yet official), bringing the count to a total of 41 PIs and co-PIs that are supported by NASA and NSF on EXPORTS/BoBP. This level of investment likely makes EXPORTS the largest coordinated U.S.-funded biogeochemical field program since the Joint Global Ocean Flux Study (JGOFS) nearly 2 decades ago. Table 1 lists the funded projects, PI, and co-PIs, project titles, and links to two page descriptions for each project.

Any implementation of the EXPORTS field program must result in the quantification of the major export pathways that remove fixed organic carbon from the upper ocean and sequester it at depth. NASA is uniquely poised, given the global vantage point of space-based observations, to use Earth observing satellite data to meet this objective, while also understanding observational requirements for future advanced Earth Observing missions.  Quantification of major carbon export pathways requires the simultaneous measurement of 1) sinking particle fluxes (and their composition), 2) the export of organic carbon to depth via vertically migrating zooplankton, and 3) the vertical transport of dissolved and suspended particulate organic carbon to depth, where it is remineralized by different microbial communities. To develop predictive links to satellite ocean color-retrievable parameters, the quantification of export pathways must be augmented by research programs focused on, but not limited to, the elucidation of plankton community structure, rates of NPP and grazing, and optical oceanography. Complicating this further is the stochastic nature of export flux determinations that necessitates a fully four-dimensional sampling design while maintaining a long-term perspective. This reasoning led to the Agency selection of projects listed in Table 1.

The planning of the EXPORTS field campaign is well underway. The first field deployment is planned to take place in the summer of 2018 in the Northeast Pacific, while the tentative second cruise will be in the North Atlantic Ocean in the spring of 2020. NASA has formed a project office staffed of Agency and EXPORTS PIs to direct EXPORTS’ progress. The EXPORTS Science Team, which comprises the funded PIs, is participating on near-weekly teleconferences, and co-chief scientists have been selected. An initial EXPORTS kickoff meeting was held in September 2017 in the Washington, DC area. There, the PIs organized themselves into working groups focused on creating short methodological descriptions for each measurement to be made. This documentation will be critical for the metadata, the project data management, and for ensuring legacy of the program through a set of NASA Technical Memoranda. This has also proven to be an excellent way to foster cross-project collaborations. A second PI meeting is scheduled for mid-February 2018, leveraging the upcoming Ocean Sciences Meeting.

 

EXPORTS First Field Deployment

The first EXPORTS field deployment will be to the Northeast Pacific Ocean in late summer 2018. Two ships, the R/V Roger Revelle and the R/V Sally Ride, will be deployed for 27 days of coordinated sampling around Station P (50°N 145°W), while EXPORTS’ autonomous component will ensure a longer-term presence. The choice of Station P as an anchor point for the field campaign was made based on results from the data mining and OSSE projects and the availability of a long-term data set for this site, as well as the many sampling partnerships afforded by ongoing programs. Canada’s Line P long-term hydrographic/biogeochemistry program has been running since 1949, and they currently conduct three annual transect cruises from British Columbia to Station P. Other useful partnerships include NOAA Pacific Marine Environmental Laboratory’s (PMEL) air-sea interaction buoy and the NSF’s Ocean Observatories Initiative’s (OOI) global node at Station P.

 

Figure 1: Cartoon depicting many of the individual elements to be deployed during the 2018 EXPORTS sampling program in the North Pacific.

The EXPORTS 2018 field deployment will comprise four basic components (depicted in Figure 1 above). First, several autonomous vehicles will be deployed before the ship observations. An instrumented Lagrangian float will be deployed at depth and used to set the spatial center of the sampling program, while an instrumented Seaglider will be used to provide vertical and some horizontal spatial information around the Lagrangian float’s drift. In addition, and if approved by the OOI Facility Board, instrumented gliders deployed at the Station P OOI global node will be used to supplement the autonomous vehicle data streams.

Second, the R/V Roger Revelle will be the Process Ship, and will follow the Lagrangian float. The Process Ship will focus on rates (NPP, sinking particle fluxes, grazing, net community production, zooplankton respiration and fecal particle production, aggregate formation, etc.) and vertical information (microbial community structure and particle size spectra) in the water mass surrounding the float. Rate measurements will be made using water sampled with a trace metal-clean rosette system, and sinking particle fluxes from neutrally buoyant sediment traps (NBSTs) and sediment trap array. In particular, microbial community structure will be measured using a variety of techniques, including high-throughput microscopic imaging systems, meta-community genomic sequencing, isolation and experimentation on individual marine snow aggregates, and gel trap-collected sinking particles. The Process Ship will also conduct a complete optical oceanographic sampling program ensuring links to remotely sensed parameters. Drs. Deborah Steinberg (VIMS) and Jason Graff (OSU) have volunteered to be co-chief scientists for the R/V Revelle.

Third, the R/V Sally Ride will be the Survey Ship making spatial patterns about the Process Ship on scales from roughly 1 km to nearly 100 km. The focus of the Survey Ship will be collecting horizontal spatial information on particle export (234Th disequilibrium), net community production (O2/Ar), organic carbon stocks, phytoplankton composition, and inherent and apparent optical properties. The Survey Ship will also deploy a suite of instrumentation to characterize the particle size spectrum from 20 nm to nearly a cm. It will also be responsible for validating the calibration of the autonomous vehicles’ bio-optical instrumentation and the development of the biogeochemical proxies. Norm Nelson (UCSB) and Mary Jane Perry (self-affiliated) have agreed to be the co-chief scientists on the R/V Sally Ride.

Last, EXPORTS needs a long-term sampling presence to tie the ship-based observations to climatically relevant time and space scales. The Lagrangian float and Seaglider will sample for ~6 months, bracketing EXPORTS’ intensive ship observations, and thus providing some long-term perspectives to the ship sampling. Partnering programs like Line P and the OOI Global Node will allow for some additional in situ sampling opportunities and broader temporal context. Further, the PMEL mooring and a profiling float project recommended for funding by NSF will extend the long-term biogeochemical observations.

The integration of the observations will generate a data set that will not only be invaluable for building new algorithms for retrievals of new and refined data products from NASA’s current fleet of Earth Observing Satellites, but also will be critical in the development of new sets of requirements for future satellite observations of our Earth system. As described in the EXPORTS Implementation Plan, the likelihood of the EXPORTS achieving its predictive goals will increase as the number and variety of observations available to develop and test novel algorithms increases. Hence, the EXPORTS program is particularly motivated to collaborate with international partners who would be interested to share their data sets to address these important issues.

 

An Amazing Opportunity for Ocean Science

EXPORTS is the first large-scale, coordinated opportunity aimed at understanding the ocean’s biological pump since the JGOFS program. Hence, the EXPORTS team is planning to create a long-term legacy for these one-of-a-kind datasets. NASA is supporting a full-time data manager to make sure that all of the information collected is easily accessible to all; as per NASA policies, all data will be freely available. Efforts are being made to ensure the intercalibration and interoperability of measurements made across different platforms, thus ensuring continuity of the datasets. EXPORTS also plans to over-collect whole water, filtered particulate, and trap-collected samples that can be used for many purposes, both now by collaborators, and in the future as analytical methodologies become more powerful.

The timing for EXPORTS could not be better. Our understanding of the biological pump and in particular, the fate of ocean NPP has rapidly advanced over the past decade. We now know that the biological pump is four-dimensional, which complicates our observational approaches, and that food web and aggregate dynamics, microbial community composition and function, individual organism physiology and behavior, and submesoscale turbulent transport are all components that need to be quantified. Further, our observing tools and capabilities have witnessed giant leaps over just the past couple of years. Novel imaging instruments can now measure particle and aggregate size distributions and identify and quantify plankton abundances. Genomic approaches enable the characterization of plankton communities and their physiology. Novel hyperspectral optical measurements of ocean reflectance as well as component inherent optical properties provide strong links to present and future satellite ocean color missions. High-resolution numerical models now enable the elucidation of submesoscale (100s m to ~10 km) processes that include food webs and biogeochemistry, while autonomous vehicles provide persistent and spatially distributed observations that complement the shipboard sampling. It seems the time for EXPORTS is now.

Click for PDF of article and table

Table 1: EXPORTS Science Team

Lead PI Co-PIs Project Title
Michael Behrenfeld
(OSU) – NASA
Emmanuel Boss (UMaine), Jason Graff (OSU), Lionel Guidi (LOV), Kim Halsey (OSU), & Lee Karp-Boss (UMaine) First Step – Linking Remotely-Detectable Optical Signals, Photic Layer Plankton Properties, and Export Flux  
Ken Buesseler
(WHOI) – NASA
Claudia Benitez-Nelson (USC) & Laure Resplandy (Princeton) Elucidating Spatial and Temporal Variability in the Export and Attenuation of Ocean Primary Production using Thorium-234 
Craig Carlson
(UCSB) – NASA
Dennis Hansell (RSMAS) Evaluating the Controls of Dissolved Organic Matter Accumulation, its Availability to Bacterioplankton, its Subsequent Diagenetic Alteration and Contribution to Export Flux
Meg Estapa
(Skidmore) -NASA
Ken Buesseler
(WHOI), Colleen Durkin (MLML) & Melissa Omand (URI)
Linking Sinking Particle Chemistry and Biology with Changes in the Magnitude and Efficiency of Carbon Export into the Deep Ocean 
Craig Lee
(UW) – NASA
Eric D’Asaro (UW), David Nicholson (WHOI), Melissa Omand (URI), Mary Jane Perry (self-affiliated) & Andrew Thompson (CalTech) Autonomous Investigation of Export Pathways from Hours to Seasons
Adrian Marchetti (UNC) – NASA Nicolas Cassar (Duke) & Scott Gifford (UNC) Quantifying the Carbon Export Potential of the Marine Microbial Community: Coupling of Biogenic Rates and Fluxes with Genomics at the Ocean Surface
Susanne Menden-Deuer
(URI) – NASA
Tatiana Rynearson (URI) Quantifying Plankton Predation Rates, and Effects on Primary Production, Phytoplankton Community Composition, Size Spectra and Potential for Export 
Collin Roesler (Bowdoin) – NASA Heidi Sosik (WHOI) Phytoplankton community structure, carbon stock, carbon export and carbon flux: What role do diatoms play in the North Pacific and North Atlantic Oceans? 
David Siegel
(UCSB) – NASA
Adrian Burd (UGA), Andrew McDonnell (UAF), Norm Nelson (UCSB) & Uta Passow (UCSB) Synthesizing Optically and Carbon Export-Relevant Particle Size Distributions for the EXPORTS Field Campaign
Deborah Steinberg (VIMS) – NASA Amy Maas (BIOS) Zooplankton-Mediated Export Pathways: Quantifying Fecal Pellet Export and Active Transport by Diel and Ontogenetic Vertical Migration in the North Pacific and Atlantic Oceans 
Xiaodong Zhang (UND) – NASA Deric Gray (NRL), Lionel Guidi (LOV) & Yannick Huot (Sherbrooke) Optically Resolving Size and Composition Distributions of Particles in the Dissolved-Particulate Continuum from 20 nm to 20 mm to Improve the Estimate of Carbon Flux
Bethany Jenkins (URI) – NSF* Mark Brzezinski (UCSB) & Kristen Buck (USF) Collaborative Research: Diatoms, Food Webs and Carbon Export – Leveraging NASA EXPORTS to Test the Role of Diatom Physiology in the Biological Carbon Pump
Ben Van Mooy (WHOI) -NSF* Environmental Lipidomics of Suspended and Sinking Particles in the Upper Ocean
Andrea Fassbender (MBARI) – NSF* Constraining Upper-Ocean Carbon Export with Biogeochemical Profiling Floats

*Project recommended for funding by NSF, but not officially funded as of this publication.

Next Page »

Filter by Keyword

abundance acidification africa air-sea interactions alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthropogenic carbon aragonite saturation arctic arsenic Atlantic Atlantic modeling atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bioavailability biogeochemical cycles biogeochemical models biogeochemistry biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity CaCO3 calcification calcite carbon-climate feedback carbon-sulfur coupling carbon cycle carbon dioxide carbon sequestration Caribbean CCA CCS changing marine ecosystems changing ocean chemistry chemoautotroph chl a chlorophyll circulation climate change CO2 coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs currents cyclone DCM decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration dimethylsulfide dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export EXPORTS extreme weather events faecal pellets filter feeders filtration rates fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forams freshening freshwater frontal zone future oceans geochemistry geoengineering GEOTRACES glaciers gliders global carbon budget global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio land-ocean continuum larvaceans lateral transport lidar ligands light light attenuation mangroves marine heatwave marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixotrophy modeling mode water molecular diffusion MPT multi-decade NASA NCP net community production new technology nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean carbon uptake and storage ocean color ocean observatories ODZ oligotrophic omics OMZ open ocean optics organic particles overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic pH phenology phosphorus photosynthesis physical processes physiology phytoplankton plankton POC polar regions pollutants prediction primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seaweed sediments sensors shelf system shells ship-based observations silicate sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST subduction submesoscale subpolar subtropical surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano water quality western boundary currents wetlands winter mixing zooplankton

Copyright © 2021 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.