Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Future BioGeoSCAPES program
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Other Workshops
      • GO-BCG Scoping Workshop
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • Arctic-COLORS Data Synthesis
    • Carbon Isotopes in the Ocean Workshop
    • CMIP6 WG
      • CMIP6 Models Workshop
    • Coastal BGS Obs with Fisheries
    • C-saw extreme events workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish, fisheries and carbon
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Marine carbon dioxide removal
      • Marine CDR Workshop
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • OOI BGC sensor WG
    • Phytoplankton Taxonomy WG
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for sensors

Partitioning carbon export into particulate and dissolved pools from biogeochemical profiling float observations

Posted by mmaheigan 
· Thursday, December 17th, 2020 

Carbon export from the surface into the deep ocean via the biological pump is a significant sink for atmospheric carbon dioxide. The relative contributions of sinking particles—particulate organic carbon (POC) and dissolved organic carbon (DOC)—to the total export affect the efficiency of carbon export.

In a recent study published in Global Biogeochemical Cycles, the authors used measurements from biogeochemical profiling floats in the Northeast Pacific from 2009 to 2017 to estimate net community production (NCP), an analog for carbon export. In order to close three tracer budgets (nitrate, dissolved inorganic carbon, and total alkalinity), the authors combined these float measurements with data from the Ocean Station Papa mooring and recently developed algorithms for carbonate system parameters. By constraining end-member nutrient ratios of the POC and DOC produced, this multi-tracer approach was used to estimate regional NCP across multiple depth horizons throughout the annual cycle, partition NCP into the POC and DOC contributions, and calculate particulate inorganic carbon (PIC) production, a known ballast material for sinking particles (Figure 1). The authors also estimated POC attenuation with depth, POC export across deeper horizons, and in situ export efficiency via a particle backscatter-based approach.

With the advent of “fully-loaded” biogeochemical profiling floats equipped with nitrate, oxygen, pH and bio-optical sensors, this approach may be used to assess the magnitude and efficiency of carbon export in other ocean regions from a single platform, which will greatly reduce the risks and costs associated with traditional ship-based measurements, while broadening the spatiotemporal scales of observation.

Figure caption: Climatological mean NCP (blue line) over the entire study period (2009-2017); the POC portion of NCP (filled blue area), the DOC portion (white space) and PIC production rate (red line), in the mixed layer (left), and the euphotic zone (right). The numbers in parentheses are the integrated annual NCP rates for each curve and uncertainty reported was determined using a Monte Carlo approach.

 

Authors:
William Haskell (MBARI, now Mote Marine Laboratory)
Andrea Fassbender (MBARI, now PMEL)
Jacki Long (MBARI)
Joshua Plant (MBARI)

Building ocean biogeochemistry observing capacity, one float at a time: An update on the Biogeochemical-Argo Program

Posted by mmaheigan 
· Thursday, July 5th, 2018 

By Ken Johnson (MBARI)

The Biogeochemical-Argo (BGC-Argo) Program is an international effort to develop a global network of biogeochemical sensors on Argo profiling floats that has emerged from over a decade of community discussion and planning. While there is no formal funding for this global program, it is being implemented via a series of international research projects that harness the unique capabilities provided by BGC profiling floats. The U.S. Ocean Carbon and Biogeochemistry (OCB) Program maintains and supports a U.S. BGC-Argo subcommittee as a focal point for U.S. community input on the implementation of the global biogeochemical float array and associated science program development.

Figure 1. Steve Riser deploying a SOCCOM float from the R/V Palmer

About BGC-Argo Floats
BGC-Argo floats can carry a suite of chemical and bio-optical sensors (Figure 1 – Float Schematic).  They have enough energy to make about 250 to 300 vertical profiles from 2000 m to the surface.  At a cycle time of 10 days, that corresponds to a lifetime near 7 years.  The long endurance allows the floats to resolve seasonal to interannual variations in carbon and nutrient cycling throughout the water column.  These time scales are difficult to study from ships and ocean interior processes are hard to resolve from satellites.  BGC profiling floats extend the capabilities of these traditional observing systems in significant ways.

Figure 2. Images of Navis and APEX floats used in the SOCCOM program. These floats carry oxygen, nitrate, pH, and bio-optical (chlorophyll fluorescence and backscatter) sensors.

All of the data from profiling floats operating as part of the Argo program must be available in real-time with no restrictions on access.  The Argo Global Data Assembly centers in France and the USA both provide complete listings of all BGC profiles (argo_bio-profile_index.txt) and access to the data.  Extensive documentation of the data processing protocols is available from the Argo Data Management Team.  Individual research programs, such as SOCCOM (see below), may also provide direct data access to the observed data along with value added products such as best estimates of pCO2 derived from pH sensor data.

Regional Deployments
In 2018, it is projected that 127 profiling floats with biogeochemical sensors are will be deployed, including ~40 floats by U.S. projects. Most of the U.S. deployments (30+) will be carried out by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project (Figure 2 – Float Deployment). These floats will carry oxygen, nitrate, pH, chlorophyll fluorescence, and backscatter sensors. As part of the NOAA Tropical Pacific Observing System (TPOS) program, Steve Riser’s group (Univ. Washington) will deploy 3 BGC-Argo floats per year in the equatorial Pacific over the next 4 years. These floats will be equipped with oxygen, pH, bio-optical sensors and Passive Acoustic Listener (PAL) sensors, which provide wind speed estimates at 15-minute intervals while the floats are parked at 1000 m.  Wind speed is derived from the noise spectrum of breaking waves. Steve Emerson (Univ. Washington), with NSF support, is also deploying floats equipped with oxygen, nitrate and pH sensors in the equatorial Pacific. With funding from NSF, Andrea Fassbender (MBARI) will deploy two floats at Ocean Station Papa in the northeast Pacific in collaboration with the EXPORTS program. These floats will also carry oxygen, nitrate, pH, and bio-optical sensors.

Nearly 90 BGC floats will be deployed in 2018 by other nations in multiple ocean basins.  Much of this effort will focus on the North Pacific and North Atlantic.  The sensor load on these floats is somewhat variable. Some will be deployed with only oxygen sensors or bio-optical sensors for chlorophyll fluorescence and particle abundance. Others will carry the full suite of six sensors (oxygen, nitrate, pH, chlorophyll fluorescence, backscatter, and irradiance) that are outlined in the BGC-Argo Implementation Plan (BGC-Argo, 2016). These floats will contribute to the existing array of 305 biogeochemical floats (Figure 3 BGC Argo Map).

Community Activities
In response to the tremendous interest in the scientific community in the capabilities of profiling floats, OCB is sponsoring a Biogeochemical Float Workshop at the University of Washington in Seattle from July 9-13, 2018 to begin the process of transferring this expertise to the broader oceanographic community, bringing together potential users of this technology to discuss biogeochemical profiling float technology, sensors, and data management and begin the process of the intelligent design of future scientific experiments. The workshop will provide participating scientists direct access to the facilities of the Float Laboratory operated by Riser. This workshop builds on a previous OCB workshop Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders (Johnson et al., 2009). BGC-Argo will also have a prominent presence at the 6th Argo Science Workshop (October 22-24, 2018, Tokyo, Japan) and OceanObs19 (September 16-20, 2019, Honolulu, HI).

Figure 3. May 2018 map of the location of BGC-Argo floats that have reported in the previous month and sensor types on these floats. From jcommops.org.

BGC-Argo Publications
Several resources now highlight the capabilities of profiling floats to accomplish scientific observing goals. A web-based bibliography of biogeochemical float papers hosted on the Biogeochemical-Argo website currently includes >100 publications and continues to grow. A special issue of Journal of Geophysical Research: Oceans focused on the SOCCOM program is in progress with 11 papers now available and a dozen more forthcoming. These papers include summaries of the technical capabilities of floats and the biogeochemical sensors, comparisons of float bio-optical data with satellite remote sensing observations, seasonal and interannual assessments of air-sea oxygen flux, under-ice biogeochemistry, carbon export, comparisons of pCO2 estimated from floats with pH vs. time-series data, and net community production. The connection of float observations with numerical models is a special focus of the program and this is highlighted in several papers, including a description of the Biogeochemical Southern Ocean State Estimate (SOSE), which is a data assimilating BGC model. Results from Observing System Simulation Experiments (OSSEs) used to assess the number of floats needed for large-scale observations are also reported. The BGC-Argo steering committee is developing a community white paper for the OceanObs19 conference in September 2019. BGC-Argo also develops and distributes a community newsletter.

For more information, visit the BGC-Argo website or reach out to the U.S. BGC-Argo Subcommittee.

 

 

 

 

Filter by Keyword

234Th disequilibrium abundance acidification africa air-sea flux air-sea interactions air-sea interface algae alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthro impacts anthropogenic carbon aquaculture aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic Atlantic modeling atmospheric carbon atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical cycling biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite calcium carbonate carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon export carbon sequestration carbon storage Caribbean CCA CCS changi changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation climate change climate variability CO2 CO2YS coastal darkening coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs CTD currents cyclone data data access data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate discrete measurements dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models ecology ecosystems ecosystem state eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production EXPORTS extreme events extreme weather events faecal pellets filter feeders filtration rates fire fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone fronts functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation ions iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio laboratory vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixing mixotrophy modeling models mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nuclear war nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC plankton POC polar regions pollutants precipitation predation prediction primary production primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seasonal trends sea spray seaweed sediments sensors shelf system shells ship-based observations shorelines silicate silicon cycle sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water quality waves western boundary currents wetlands winter mixing world ocean compilation zooplankton

Copyright © 2023 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.