Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
        • Fish Carbon WG Workshop
        • Fish carbon workshop summary
      • Marine carbon dioxide removal
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Adaptive emission pathways to stabilize global temperatures

Posted by mmaheigan 
· Thursday, May 11th, 2023 

Around the world, countries have agreed in the Paris Agreement to limit global warming well below 2°C and to pursue efforts to reduce global warming to 1.5°C. However, large uncertainties remain about which emission pathways will allow us to reach this goal. A recent paper presents a new adaptive approach to create emission pathways and estimate the necessary emission reductions every five years, following the stocktake process of the Paris Agreement. This Adaptive Emissions Reduction Approach (AERA) is solely based on past warming rates, and emissions of CO2 and non-CO2 radiative agents, and explicitly does not rely on projections by Earth System Models. Updating the emission pathways every five years, circumvents uncertainties in the climate system and its transient response to cumulative emissions (TCRE). Testing with the Bern3D-LPX Earth System Model of Intermediate Complexity shows that the approach works robustly across a wide range of TCREs, avoids large overshoots, and only small changes to the emission pathways are necessary every five years. This approach will allow policymakers to estimate emission pathways and create a base for international negotiations. Furthermore, it allows simulations with Earth System Models that all converge to the same temperature target to compare the climate at stabilized warming levels.

Figure caption: The three steps of the Adaptive Emission Reduction Approach: 1) Estimating the past anthropogenic warming, 2) estimating the remaining emission budget, and 3) redistributing it over the future years.

 

Authors
Jens Terhaar (University of Bern, now Woods Hole Oceanographic Institution)
Thomas L Frölicher (University of Bern)
Mathias T Aschwanden (University of Bern)
Pierre Friedlingstein (University of Exeter, Ecole Normale Superieure)
Fortunat Joos (University of Bern)

 

Twitter @JensTerhaar @froeltho @PFriedling @unibern @snsf_ch @4C_H2020 @ExeterUniMaths @Geosciences_ENS @IPSL_outreach

Copyright © 2023 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.