Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Author Archive for mmaheigan – Page 20

The Equatorial Undercurrent influences the fate of the Oxygen Minimum Zone in the Pacific

Posted by mmaheigan 
· Tuesday, November 12th, 2019 

While the ocean as a whole is losing oxygen due to warming, oxygen minimum zones (OMZs) are maintained by a delicate balance of biological and physical processes; it is unclear how each one of them is going to evolve in the future. Changes to OMZs could affect the global uptake of carbon, the generation of greenhouse gases, and interactions among marine life. Current generation coarse-resolution (~1°) climate models compromise the ability to simulate low-oxygen waters and their response to climate change in the future because they fail to reproduce a major ocean current, the Equatorial Undercurrent (EUC). These shortcomings lead to an overly tilted upper oxygen minimum zone (OMZ) (Figure 1), thus exaggerating sensitivity to circulation changes and overwhelming other key processes like diffusion and biology. The EUC also plays a vital role in feeding the eastern Pacific upwelling region, connecting it to global climate variability.

Figure: Top: The boundary of the Oxygen Minimum Zone (OMZ) along the Equator is unrealistically tilted for current generation (coarse resolution) climate models, and improves with increased horizontal resolution. The tilt is due to a bad representation of the Equatorial Undercurrent in the coarse model, also seen in other coarse models. The exaggerated tilt of the OMZ boundary at the Equator leads to increased inter-annual variability of the depth of the upper OMZ boundary, via changes in the zonal flow (left). This phenomenon is found in most CMIP5 models (right) and could be responsible for the current inability to predict the change in OMZ extent for the next century.

A recent high‐resolution climate model study in Geophysical Research Letters significantly improved the representation of both the EUC and OMZ, suggesting that the EUC is a key player in OMZ variability. This study emphasizes the importance of improving transport processes in global circulation models to better simulate oxygen distribution and predict future OMZ extent. The results of this study imply that the fundamental dynamics maintaining this key ocean current could be categorically misrepresented in the current generation of climate models, potentially influencing the ability to predict future climate variability and trends.

 

Authors:
Julius J.M. Busecke (Princeton University)
Laure Resplandy (Princeton University)
John P. Dunne (NOAA/GFDL)

Biogeochemical controls of surface ocean phosphate

Posted by mmaheigan 
· Tuesday, November 12th, 2019 

Phosphorus availability is important for phytoplankton growth and more broadly ocean biogeochemical cycles. However, phosphate concentration is often below the analytical detection limit of the standard auto-analyzer technique. Thus, we know little about geographic phosphate variation across most low latitude regions. To address this issue, a global collaboration of scientists conducted a study published in Science Advances on combined phosphate measurements using high-sensitivity methods that yielded a detailed map of surface phosphate (Figure 1).

Figure 1: Fine-scale global variation of surface phosphate. Surface phosphate measured using high-sensitivity techniques revealed previously unrecognized low latitude differences in phosphate drawdown.

The study’s new globally expansive phosphate data set revealed previously unrecognized low-phosphate areas, including large regions of the Pacific Ocean—really low phosphate in the western North Pacific and to a lesser extent in the South Pacific. Although atmospheric iron input and nitrogen fixation are commonly described as regulators of surface phosphate, this study shows that shifts in the elemental stoichiometry (N:P:Fe) of the vertical nutrient supply play an additional role. Previous studies and climate models have suggested that the availability of phosphate is a first-order driver of ocean biogeochemical changes. Interestingly, this study suggests that marine ecosystems are more resilient to phosphate stress than previously thought. These findings underscore the importance of accurately quantifying nutrients at low concentrations for understanding the regulation of ocean ecosystem processes and biogeochemistry now and under future climate conditions.

And the data are of course available in BCO-DMO!

 

Authors:
Adam C. Martiny (University of California, Irvine)
Michael W. Lomas (Bigelow Laboratory for Ocean Sciences)
Weiwei Fu (University of California, Irvine)
Philip W. Boyd (University of Tasmania)
Yuh-ling L. Chen (National Sun Yat-sen University)
Gregory A. Cutter (Old Dominion University)
Michael J. Ellwood (Australian National University)
Ken Furuya (The University of Tokyo)
Fuminori Hashihama (Tokyo University of Marine Science and Technology)
Jota Kanda (Tokyo University of Marine Science and Technology)
David M. Karl (University of Hawaii)
Taketoshi Kodama (Japan Fisheries Research and Education Agency)
Qian P. Li (Chinese Academy of Sciences)
Jian Ma (Xiamen University)
Thierry Moutin (Université de Toulon)
E. Malcolm S. Woodward (Plymouth Marine Laboratory)
J. Keith Moore (University of California, Irvine)

The arsenic respiratory cycle in pelagic waters of Oxygen Deficient Zones

Posted by mmaheigan 
· Wednesday, October 30th, 2019 

Oxygen Deficient Zones (ODZs) are naturally occurring functionally anoxic regions of the open ocean which can act as proxies for early Earth’s anoxic ocean. Without free oxygen, microorganisms in these regions use alternative electron acceptors to oxidize organic material. These functionally anoxic regions are also hotspots for chemoautotrophic pathways. Some microorganisms can use arsenic based compounds to oxidize organic material, and others can couple nitrate reduction with arsenic oxidation supporting autotrophic carbon fixation thus linking arsenic respiration with carbon and nitrogen cycling. While arsenic concentrations in modern oceans are relatively low, the Precambrian ocean likely had periods of high arsenic concentrations. Integrating over time and space of anoxic waters, arsenic-based metabolisms may have had significant implications for the biogeochemical cycling of not only arsenic, but also carbon and nitrogen.

Figure 1: Arsenotrophic genes identified in the Eastern Tropical North Pacific Oxygen Deficient Zone. (A) Genomic complement for dissimilatory arsenate reduction assembled from metagenomes which likely supports respiration of organic matter. (B) Genomic complement for putative chemoautotrophic arsenite oxidation pathway assembled from metagenomes which may couple with nitrate reduction to support organic matter production. (C) Relative abundance of genes associated with arsenite oxidase (aioA), dissimilatory arsenate reduction (arrA), and forward dissimilatory sulfite reductase (dsrA) associated with sulfur reduction; abundance shown as a relative contribution to the total microbial community as estimated by abundance of RNA polymerase genes (rpoB). The genes arrA and forward-dsrA are more abundant in the particulate fraction, whereas aioA is more abundant in the free-living fraction. (D) Relative abundance of genes in the microbial community for the more abundant genes aioA-like and reverse form of dsrA associated with sulfur oxidation. aioA-like genes are relatively more abundant within the particulate fraction, with no strong partitioning between fractions identified for the reverse-dsrA genes. Arsenical reduction and chemoautotrophic arsenical oxidation are likely performed by different microbial groups within the ODZ communities.

Recent work in PNAS identified gene sequences for a complete arsenic respiratory cycle from Eastern Tropical North Pacific (ETNP) ODZ metagenomes. The authors identified arsenotrophic genes for dissimilatory arsenate reduction from one group of microorganisms and genes for a putative chemoautotrophic arsenite oxidation pathway from another group within the ETNP ODZ microbial community. Analysis of genomic sequences from a free-living sample and from particulate-associated sample indicate niche differentiation of these pathways—arsenate reduction genes enriched within the particulate fraction and arenite oxidation enriched in the free-living water column. In addition to the presence of these genes in metagenomes, the authors identified the active expression of these arsenotrophic genes in publicly available metatranscriptomes from the ETNP and Eastern Tropical South Pacific ODZs. Theyalso found an abundance of sequences in the ETNP ODZ for the gene aioA-like, which is a closely related enzyme to arsenite oxidase (aioA), but with an unconfirmed function. The identification of these actively expressed genes in modern ODZs enables further investigation of these cycles that were likely important in early oceans. These findings also highlight that there are still yet to be discovered respiratory pathways in ODZs. Arsenotrophy, in conjunction with other niche respiratory pathways – both known and as yet undiscovered – likely sum to a considerable contribution of energy flow and elemental cycling through these anoxic systems.

Authors:
Jaclyn Saunders (University of Washington; present affiliation Woods Hole Oceanographic Institution)
Clara Fuchsman (University of Washington; present affiliation Horn Point Laboratory)
Cedar McKay & Gabrielle Rocap (University of Washington)

 

See related University of Washington press-release

Pumped up by the cold: Increased elemental density in polar diatoms

Posted by mmaheigan 
· Monday, October 28th, 2019 

Large diatoms are common in polar phytoplankton blooms, contributing significantly to food webs and carbon export, but relatively little is known about their elemental biogeochemistry. A recent study in Frontiers in Marine Science showed that the size-dependent increase in cell nutrient content for polar diatoms was similar to published values for temperate diatoms, whereas the elemental density (mass per unit volume) of polar diatoms was substantially greater for all elements measured (carbon, nitrogen, silicon and phosphorus). Furthermore, at near freezing culture temperatures, there was a positive relationship between diatom size and realized growth rates near their theoretical maximum (Figure 1). Because of the differences in elemental density between carbon and silica, these diatoms exhibited particulate C:Si ratios that are commonly interpreted as a sign of iron limitation; yet these cultures were trace metal-replete. The observed elemental composition differences suggest that it may be important for polar biogeochemical models to include different representations of diatom biogeochemistry by accounting for the functions of size and near freezing temperature.

Figure 1. Left: Cellular carbon content for polar diatoms across four orders of magnitude in biovolume compared to the same relationship for a wide range of non-polar diatoms (MD&L = Menden-Deuer & Lessard, 2000). The y-intercept is the estimate of the baseline carbon density in these polar diatoms, and is significantly higher than the literature values reviewed in MD&L (2000). Right: Growth rate of the same polar diatoms expressed as a percent of their calculated maximum growth rate at 2°C. Error bars represent the range of values observed in the experiments. Maximum growth rate was estimated by 1) applying the growth rate/biovolume relationships published by Chisholm (1992) and Edwards et al. (2012) to the observed biovolume for each culture, and 2) scaling this growth rate to 2°C growth temperature using the relationship of Eppley (1972).

Authors:
Michael Lomas (Bigelow Laboratory for Ocean Sciences)
Steven Baer (Maine Maritime Academy)
Sydney Acton (Dauphin Island Sea Lab)
Jeffrey Krause (Dauphin Island Sea Lab and University of South Alabama)

The ecology of the biological carbon pump

Posted by mmaheigan 
· Tuesday, October 15th, 2019 

Plankton in the surface ocean convert CO2 into organic biomass thereby fueling marine food webs. Part of this organic biomass sinks down into the deep ocean, where the surface-derived organic carbon, or respired CO2, is locked in for decades to millennia. Without the biological carbon pump, atmospheric CO2 would be ~200 ppm higher than it is today. We know that ecological processes in the surface ocean plankton communities have a paramount importance on the efficiency of the biological carbon pump. Unfortunately, however, the mechanisms how ecology determines sinking fluxes are poorly understood.

A recent study in Global Biogeochemical Cycles used large-scale in situ mesocosms to explore how the ecological interplay within plankton communities affects the downward flux of organic material. Organic biomass tends to sink faster when produced by smaller organisms because the sinking material they generate forms dense aggregates. Conversely, larger organisms produce relatively porous particles that sink more slowly.

Figure: Flow chart illustrating how plankton community structure affects the properties of sinking organic particles and ultimately the strength and efficiency of the biological carbon pump. The thick arrows at the bottom indicate that flux attenuation depends on the properties of particulate matter formed in the surface ocean. For example, slow-sinking porous aggregates containing large amounts of easily degradable organic substances will decay faster (right side) than dense aggregates of more refractory organic matter (left side).

The key finding of this study was the unexpectedly large influence that plankton community composition has on the degradation rate of sinking organic biomass. In fact, degradation rates changed maximally 15-fold over the course of the study while sinking speed changed only 3-fold. Degradation rate of sinking material, measured in oxygen consumption assays, was quite variable and tended to be higher for more easily degradable fresh organic matter. The rate was lower during harmful algal blooms, which produce toxic substances that inhibit organisms that feed on aggregates thereby reducing degradation rates. These findings are an important step forward as they show that our predictive understanding of the biological carbon pump could be improved substantially when linking degradation rates of sinking material with ecological processes in surface ocean plankton communities.

Authors:
L. T. Bach (University of Tasmania)
P. Stange, J. Taucher, E. P. Achterberg, M. Esposito, U. Riebesell (GEOMAR)
M. Algueró‐Muñiz (Alfred-Wegener-Institut Helmholtz)
H. Horn (NIOZ and Utrecht University)

A new tidal non-photochemical quenching model reveals obscured variability in coastal chlorophyll fluorescence

Posted by mmaheigan 
· Tuesday, October 15th, 2019 

Although chlorophyll fluorescence is widely-used as a proxy for chlorophyll concentration, sunlight exposure makes fluorescence measurements inaccurate through a process called non-photochemical quenching, limiting its proxy accuracy during daylight hours. In the open ocean, where time and space scales are large relative to variability in phytoplankton concentration, daytime chlorophyll fluorescence—necessary for satellite algorithm validation and for understanding diurnal variability in phytoplankton abundance—can be estimated by averaging across successive nighttime, unquenched values. In coastal waters, where semidiurnal tidal advection drives small scale patchiness and short temporal variability, successive nighttime observations do not accurately represent the intervening daytime. Thus, it is necessary to apply a non-photochemical quenching correction that accounts for the additional effect of tidal advection.

In a recent study in L&O Methods, authors developed a model that uses measurements of tidal velocity to correct daytime chlorophyll fluorescence for non-photochemical quenching and tidal advection. The model identifies high tide and low tide endmember populations of phytoplankton from tidal velocity, and estimates daytime chlorophyll fluorescence as a conservative interpolation between endmember fluorescence at those tidal maxima and minima (Figure 1). Rather than removing nearly 12 hours’ worth of hourly chlorophyll fluorescence observations (i.e., all of the daytime observations) as was previously necessary, this model recovers them. The model output performs more accurately as a proxy for chlorophyll concentration than raw daytime chlorophyll fluorescence measurements by a factor of two, and enables tracking of phytoplankton populations with chlorophyll fluorescence in a Lagrangian sense from Eulerian measurements. Finally, because the model assumes conservation, periods of non-conservative variability are revealed by comparison between model and measurements, helping to elucidate controls on variability in phytoplankton abundance in coastal waters.

Figure 1: Model (light blue line) is a tidal interpolation between high tide (blue points) and low tide (red points) phytoplankton endmembers. The model represents nighttime, unquenched chlorophyll fluorescence measurements well (black points), while daytime, quenched measurements are visibly reduced (gray points).

This result is a critical achievement, as it enables the use of daytime chlorophyll fluorescence, which increases the temporal resolution of coastal chlorophyll fluorescence measurements, and also provides a mechanism for satellite validation of the ocean color chlorophyll data product in coastal waters. The model’s capacity to accurately simulate the pervasive effect of non-photochemical quenching makes it a vital tool for any researcher or coastal water manager measuring chlorophyll fluorescence. This model will help to provide new insights on the movement of and controls on phytoplankton populations across the land-ocean continuum.

Authors:
Luke Carberry (University of California, Santa Barbara)
Collin Roesler (Bowdoin College)
Susan Drapeau (Bowdoin College)

 

A new roadmap of climate change driven ocean changes

Posted by mmaheigan 
· Wednesday, October 2nd, 2019 

When will we see significant changes in the ocean due to climate change? A new study in Nature Climate Change confirms that outcomes tied directly to the escalation of atmospheric carbon dioxide have already emerged in the existing 30-year observational record. These include sea surface warming, acidification, and increases in the rate at which the ocean removes carbon dioxide from the atmosphere.

In contrast, processes tied indirectly to the ramp-up of atmospheric carbon dioxide through the gradual modification of climate and ocean circulation will take longer, from three decades to more than a century. These include changes in upper-ocean mixing, nutrient supply, and the cycling of carbon through marine plants and animals.

The researchers performed model simulations of potential future climate states that could result from a combination of human-made climate change and random chance (figure 1). These experiments were performed with an Earth System Model, a climate model that has an interactive carbon cycle such that changes in the climate and carbon cycle can be considered in tandem.

Figure 1: Percentage of ocean with emergent anthropogenic trends in ocean biogeochemical and physical variables. A time series of the percentage of the global ocean area with locally emergent anthropogenic trends illustrates the disparity of emergence timescales for anthropogenic changes in the ocean carbon cycle. Emergence is defined as the point in time when the LE’s signal-to-noise ratio for a linear trend referenced to the year 1990 first exceeds a magnitude of two, which represents a 95% confidence in the identification of an anthropogenic trend in the LE Ω applies to the saturation state of both the aragonite and calcite forms of calcium carbonate (CaCO3), for which the emergence times are approximately equivalent. The CaCO3 and soft-tissue pumps were calculated as the export flux at 100 m depth of CaCO3 and particulate organic carbon, respectively. The heat content was calculated as an integral over 0–700 m, whereas the oxygen (O2) inventories consider the integral 200–600 m, and chlorophyll inventories were considered over 0–500 m. NPP represents an integral over 0–100 m. All the other variables represent sea surface properties.

The finding of a 30- to 100-year delay in the emergence of effects suggests that ocean observation programs should be maintained for many decades into the future to effectively monitor the changes occurring in the ocean. The study also indicates that the detectability of some changes in the ocean would benefit from improvements to the current observational sampling strategy. These include looking deeper into the ocean for changes in phytoplankton and capturing changes in both summer and winter ocean-atmosphere exchange of carbon dioxide rather than just the annual mean.

Figure 2. Venn Diagram schematic of sources of uncertainty in simulation (using Earth-System Modeling approach) and observation of changes in the Earth system. For emergence, detection or attribution of an observed or simulated signal to occur, the signal must overcome the sources of uncertainty in their respective brackets.

Many types of observational efforts, including time-series or permanent locations of continuous measurement, as well as regional sampling programs and global remote sensing platforms are critical for understanding our changing planet and improving our capacity to detect change.

Authors:
Sarah Schlunegger (Princeton University)
Keith B. Rodgers (Institute for Basic Science and Busan National University, South Korea)
Jorge L. Sarmiento (Princeton University)
Thomas L. Frölicher (University of Bern)
John P. Dunne (NOAA Geophysical Fluid Dynamics Laboratory)
Masao Ishii (Japan Meteorological Agency)
Richard Slater (Princeton University)

 

Industrial era climate forcing drives multi-century decline in North Atlantic productivity

Posted by mmaheigan 
· Wednesday, October 2nd, 2019 

Phytoplankton respond directly to climate forcing, and due to their central role in global oxygen production and atmospheric carbon sequestration, they are critical components of the Earth’s climate system. There are however few observations detailing past variability in marine primary productivity, particularly over multi-decadal to centennial timescales. This limits our understanding of the long-term impact of climatic forcing on both past and future marine productivity.

Multi-century decline of subarctic Atlantic productivity. From top: standardized (z-score units relative to ad 1958-2016) indices of Continuous Plankton Recorder (CPR)-based diatom, dinoflagellate and coccolithophore relative-abundances; North Atlantic [chlorophyll-α] reconstruction from Boyce et al. (2010, Nature); ice core-based [MSA] PC1 productivity index. The “Industrial Onset” range shows the estimated initiation of declining subarctic Atlantic productivity; reconstructed (Rahmstorf et al., 2015, Nat. Clim. Change) and observed sea-surface temperature-based Atlantic Meridional Overturning Circulation (i.e., AMOC) index, alongside 5-year averaged subarctic Atlantic freshwater storage anomalies (relative to A.D. 1955) from Curry and Mauritzen (2005; Science).

Authors of a new study published in Nature used a high-resolution signal of marine biogenic aerosol emissions (methanesulfonic acid, or “MSA”) preserved within twelve Greenland ice cores to reconstruct a ~250-year record of marine productivity variations across the subarctic Atlantic basin, one of the most biologically productive and climatically sensitive regions on Earth. These results provide the most continuous proxy-based reconstruction of basin-scale productivity to date in this region, illuminating the following major findings: (1) subarctic Atlantic marine productivity has declined over the industrial era by as much as 10 ± 7%; (2) the early 19th century onset of declining productivity coincides with the regional onset of industrial-era surface warming, and also strongly covaries with regional sea surface temperatures and basin-scale gyre circulation strength; (3) there is strong decadal- to centennial-scale coherence between northern Atlantic productivity variability and declining Atlantic Meridional Overturning Circulation (AMOC) strength, as predicted by prior model-based studies.

Future atmospheric warming is predicted to contribute to accelerating Greenland Ice Sheet runoff, ocean-surface freshening, and AMOC slowdown, suggesting the potential for continued declines in productivity across this dynamic and climatically important region. Such declines will, in turn, have important implications for future maritime economies, global food security, and drawdown of atmospheric carbon dioxide.

 

Authors:
Matthew Osman (Massachusetts Institute of Technology)
Sarah Das (Woods Hole Oceanographic Institution)
Luke Trusel (Rowan University)
Matthew Evans (Wheaton College)
Hubertus Fischer (University of Bern)
Mackenzie Griemann (University of California, Irvine)
Sepp Kipfstuhl (Alfred-Wegener-Institute)
Joseph McConnell (Desert Research Institute)
Eric Saltzman (University of California, Irvine)

 

Figure references:
Boyce, D. G., Lewis, M. R. & Worm, B. (2010) Global phytoplankton decline over the past century. Nature 466, 591–596.

Curry, R. & Mauritzen, C. (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308, 1772–1774.

Rahmstorf, S. et al. (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480.

Where the primary production goes determines whether you catch tuna or cod

Posted by mmaheigan 
· Friday, September 6th, 2019 

Fishes are incredibly diverse, fill various roles in their ecosystems, and are an important resource—economically, socially, and nutritionally. The relationship between primary productivity and fish catches is not straightforward; fisheries oceanographers and managers have long struggled to predict abundances and fully understand the controls of cross-ecosystem differences in fish abundances and assemblages. A recent study in Progress in Oceanography modeled the relationships between fish abundances and assemblages and ecosystem factors such as physical properties and plankton productivity.

The mechanistic model simulated feeding, growth, reproduction, and mortality of small pelagic forage fish, large pelagic fish, and demersal (bottom-dwelling) fish in the global ocean using plankton food web estimates and ocean conditions from a high-resolution earth system model of the 1990s. Modeled fish assemblages were more related to the separation of secondary production into pelagic zooplankton or benthic fauna secondary production than to primary productivity. Specifically, the ratio of pelagic to benthic production drove spatial differences in dominance by large pelagic fish or by demersal fish. Similarly, demersal fish abundance was highly sensitive to the efficiency of energy transfer from exported surface production to benthic fauna.

The model results offer a systematic understanding of how marine fish communities are structured by spatially varying environmental conditions. With global climate change, the expected decrease in exported primary production would lead to fewer demersal fish around the world. This model provides a framework for testing the effect of changing conditions on fish communities at a global scale, which can also help inform managers of potential impacts on economic, social, and nutritional resources worldwide.

Figure 1: (A) Sample food web with three fish types, two habitats, two prey categories, and feeding interactions (arrows). Dashed arrow denotes feeding only occurs in shelf regions with depth <200 m. (B) Fraction of large pelagic vs. demersal fishes (LP/(LP+D)) as a function of the ratio of zooplankton production lost to higher predation (Zoop) to detritus flux to the seafloor (Bent) averaged over large marine ecosystems. Solid line: predicted linear model response, dashed lines: standard error. (Lower panels) Circles=mean biomasses (g m-2) and lines=fluxes of biomass (g m-2 d-1) through the pelagic (top 100m) and benthic components of the food webs at two test locations, (C) Peruvian Upwelling (PUP) ecosystem and (D) Eastern Bering Sea (EBS) shelf ecosystem. Circles and lines scale with the modeled biomasses and fluxes. Circle color key: Gray=net primary productivity (NPP); yellow=medium and large zooplankton; red=forage fish; blue=large pelagic fish; brown=benthos; green=demersal fish.

 

Authors:
Colleen M. Petrik (Princeton University, Texas A&M University)
Charles A. Stock (NOAA Geophysical Fluid Dynamics Laboratory)
Ken H. Andersen (Technical University of Denmark)
P. Daniël van Denderen (Technical University of Denmark)
James R. Watson (Oregon State University)

 

Predicting marine ecosystem futures

Posted by mmaheigan 
· Wednesday, September 4th, 2019 

Earth System Models (ESMs) are powerful and effective tools for exploring and predicting marine ecosystem response to environmental change, including biogeochemical processes that underlie threats to ocean health such as ocean acidification, deoxygenation, and changes in productivity. Seasonal to interannual marine biogeochemical predictions with ESMs hold great promise for exploring links between climate and marine resources such as fisheries but have thus far been challenged by limitations associated with observational initialization, model structure, and computational availability. In a recent study published in Science, authors integrated the Geophysical Fluid Dynamics Laboratory’s (GFDL) COBALT (Carbon, Ocean Biogeochemistry and Lower Trophics) marine biogeochemical model with seasonal to multi-annual climate predictions from GFDL’s CM2.1 climate model to examine marine ecosystem futures on these shorter time scales. The global biogeochemical forecasts were initialized on the first of each month between 1991 and 2017 with 12 ensemble members in each prediction, creating a database of nearly 4000 forecasts and 8000 simulation years. The model skillfully predicted seasonal to multi-annual chlorophyll fluctuations in many ocean regions (Figure 1).

 

Figure 1: Prediction skill in reproducing observed variations of monthly chlorophyll anomaly. (Top) Correlation coefficient between predicted and observed chlorophyll at 1-3 month lead time during the period 1997-2017. Stippled areas indicate that the correlation is significantly greater than 0 with 95% confidence. Areas with less than 80% satellite chlorophyll coverage are masked in grey. (Lower panels) Correlation coefficient between predicted and observed chlorophyll as a function of forecast initialization month (x-axis) and lead time (y-axis) in tropical Pacific, Indian, North Atlantic, North Pacific, and South Pacific oceans. In all panels, the darker the red, the higher the correlation up to a perfect correlation of 1.0. White indicates no correlation, while blue indicates negative correlation.

These results suggest that annual fish catches in selected large marine ecosystems can be predicted from chlorophyll and sea surface temperature anomalies up to 2-3 years in advance. Given that fisheries predictions sometimes failed to the point of commercial stock collapse in the past, this prediction capacity could be vital for fisheries managers. Biogeochemical prediction systems can extend beyond sea surface temperature and chlorophyll to include other potential drivers (e.g., oxygen, acidity, net primary production, zooplankton, etc.) as highly valuable tools for marine resource managers of dynamic and changing ecosystems.

Authors:
Jong-Yeon Park (Princeton Univ, NOAA GDFL, Chonbuk National Univ., Korea)
Charles A. Stock, John P. Dunne, Xiaosong Yang, and Anthony Rosati (NOAA GFDL)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation CO2 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.