Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for New OCB Research – Page 9

pH: the secrets that you keep

Posted by mmaheigan 
· Monday, September 20th, 2021 

The Intergovernmental Panel on Climate Change (IPCC) defines ocean acidification as “a reduction in pH of the ocean over an extended period, typically decades or longer, caused primarily by the uptake of carbon dioxide (CO2) from the atmosphere” (Rhein et al., 2013, p. 295). Does this mean that a greater change in pH at the ocean surface relative to the subsurface, or at one location relative to another, always indicates greater acidification? Based on this IPCC definition of ocean acidification, the answer is yes. But does that make sense?

Seawater pH is the negative base 10 logarithm of the seawater’s hydrogen ion concentration ([H+]) and is a useful way to display a wide range of [H+] in a compact form. A change in pH reflects a relative change in [H+]. Thus, anytime we speak of pH changes, we are really referring to a relative change in the chemical species of interest ([H+]). On the other hand, changes in all the other carbonate system variables that we measure are usually absolute. This characteristic of pH can lead to ambiguity in the interpretation and presentation of rates and patterns of change. Improved understanding comes from also studying changes in [H+], which can reveal aspects that studying changes in pH alone may conceal or overemphasize.

A recent Biogeosciences article reviewed the history leading to this unintuitive relationship between changes in pH and changes in [H+]. The article provides three real-world examples to display how examining pH changes alone can hide the ocean acidification signals of interest (Figure 1). These examples highlight potential challenges associated with comparing surface and subsurface pH changes across ocean domains without accounting for differences in the initial pH values. The authors recommend reporting both pH and [H+] in studies that assess changes in ocean chemistry to improve the clarity of ocean acidification research.

Figure Caption: Data used in this figure come from the GFDL ESM2M model for the combined historical and RCP8.5 experiments. Top: the 1950s surface ocean (left) pH and (right) [H+]. Bottom: the 1950s to 2090s change (Δ) in surface ocean (left) pH and (right) [H+]. The color bar for ΔpH is reversed to ease comparison with patterns of Δ[H+]

Authors:
Andrea J. Fassbender (NOAA Pacific Marine Environmental Laboratory)
Andrew G. Dickson (Scripps Institution of Oceanography, University of California, San Diego)
James C. Orr (LSCE/IPSL, Laboratoire des Sciences du Climat et de l’Environnement)

Exploiting phytoplankton as a biosensor for nutrient limitation

Posted by mmaheigan 
· Wednesday, September 15th, 2021 

In the surface ocean, phytoplankton growth is often limited by a scarcity of key nutrients such as nitrogen, phosphorus, and iron. While this is important, there are methodological and conceptual difficulties in characterizing these nutrient limitations.

A recent paper published in Science Magazine leveraged a global metagenomic dataset from Bio-GO-SHIP to address these challenges. The authors characterized the abundance of genes that confer adaptations to nutrient limitation within the picocyanobacteria Prochlorococcus. Using the relative abundance of these genes as an indicator of nutrient limitation allowed the authors to capture expected regions of nutrient limitation, and novel regions that had not previously been studied. This gene-derived indicator of nutrient limitation matched previous methods of assessing nutrient limitation, such as bottle incubation experiments.

These findings have important implications for the global ocean. Characterizing the impact of nutrient limitation on primary production is especially critical in light of future stratification driven by climate change. In addition, this novel methodological approach allows scientists to use microbial communities as an eco-genomic biosensor of adaptation to changing nutrient regimes. For instance, future studies of coastal microbes or other ecosystems may help communities and environmental managers better understand how local microbial populations are adapting to climate change.

 

Watch an illustrated video overview of this research

Authors:
Lucas J. Ustick, Alyse A. Larkin, Catherine A. Garcia, Nathan S. Garcia, Melissa L. Brock, Jenna A. Lee, Nicola A. Wiseman, J. Keith Moore, Adam C. Martiny
(all University of California, Irvine)

How atmospheric and oceanographic forcing impact the carbon sequestration in an ultra-oligotrophic marine system

Posted by mmaheigan 
· Wednesday, August 11th, 2021 

Sinking particles are a critical conduit for the export of material from the surface to the deep ocean. Despite their importance in oceanic carbon cycling, little is known about the composition and seasonal variability of sinking particles which reach abyssal depths. Oligotrophic waters cover ~75% of the ocean surface and contribute over 30% of the global marine carbon fixation. Understanding the processes that control carbon export to the deep oligotrophic areas is crucial to better characterize the strength and efficiency of the biological pump as well as to project the response of these systems to climate fluctuations and anthropogenic perturbations.

In a recent study published in Frontiers in Earth Science, authors synthesized data from atmospheric and oceanographic parameters, together with main mass components, and stable isotope and source-specific lipid biomarker composition of sinking particles collected in the deep Eastern Mediterranean Sea (4285m, Ierapetra Basin) for a three-year period (June 2010-June 2013). In addition, this study compared the sinking particulate flux data with previously reported deep-sea surface sediments from the study area to shed light on the benthic–pelagic coupling.

Figure Caption: a) Biplot of net primary productivity vs export efficiency (top and bottom horizontal dashed lines indicate threshold for high and low export efficiency regimes). b) Biplot of POC-normalized concentrations of terrestrial vs. phytoplankton-derived lipid biomarkers of the sinking particles collected in the deep Eastern Mediterranean Sea (Ierapetra Basin, NW Levantine Basin) from June 2010–June 2013, and surface sediments collected from January 2007 to June 2012 in the study area.

Both seasonal and episodic pulses are crucial for POC export to the deep Eastern Mediterranean Sea. POC fluxes peaked in spring April–May 2012 (12.2 mg m−2 d−1) related with extreme atmospheric forcing. Overall, summer particle export fuels more efficient carbon sequestration than the other seasons. The results of this study highlight that the combination of extreme weather events and aerosol deposition can trigger an influx of both marine labile carbon and anthropogenic compounds to the deep. Finally, the comparison of the sinking particles flux data with surface sediments revealed an isotopic discrimination, as well as a preferential degradation of labile organic matter during deposition and burial, along with higher preservation of land-derived POC in the underlying sediments. This study provides key knowledge to better understand the export, fate and preservation vs. degradation of organic carbon, and for modeling the organic carbon burial rates in the Mediterranean Sea.

 

Authors:
Rut Pedrosa-Pamies (The Ecosystems Center, Marine Biological Laboratory, US; Research Group in Marine Geosciences, University of Barcelona, Spain)
Constantine Parinos (Institute of Oceanography, Hellenic Centre for Marine Research, Greece)
Anna Sanchez-Vidal (Group in Marine Geosciences, University of Barcelona, Spain)
Antoni Calafat (Group in Marine Geosciences, University of Barcelona, Spain)
Miquel Canals (Group in Marine Geosciences, University of Barcelona, Spain)
Dimitris Velaoras (Institute of Oceanography, Hellenic Centre for Marine Research, Greece)
Nikolaos Mihalopoulos (Environmental Chemical Processes Laboratory, University of Crete; National Observatory of Athens, Greece)
Maria Kanakidou (Environmental Chemical Processes Laboratory, University of Crete Greece)
Nikolaos Lampadariou (Institute of Oceanography, Hellenic Centre for Marine Research, Greece)
Alexandra Gogou (Institute of Oceanography, Hellenic Centre for Marine Research, Greece)

A new proxy for ocean iron bioavailability

Posted by mmaheigan 
· Monday, July 26th, 2021 

In many oceanic regions, iron exerts strong control on phytoplankton growth, ecosystem structure and carbon cycling. Yet, iron bioavailability and uptake rates by phytoplankton in the ocean are poorly constrained.

Recently, Shaked et al. (2020) (see GEOTRACES highlight), established a new approach for quantifying the availability of dissolved Fe (dFe) in natural seawater based on its uptake kinetics by Fe-limited cultured phytoplankton. In a follow up study published in GBC, this approach was extended to in situ phytoplankton, establishing a standardized proxy for dFe bioavailability in low-Fe ocean regions.

As explained in the short video lecture above, Yeala Shaked, Ben Twining, and their colleagues have analyzed large datasets collected during 10 research cruises (including 3 GEOTRACES section and process cruises) in multiple ocean regions. Dissolved Fe bioavailability was estimated through single cell Fe uptake rates, calculated by combining measured Fe contents of individual phytoplankton cells collected with concurrently-measured dFe concentrations, as well as modeled growth rates (Figure). Then the authors applied this proxy for: a) comparing dFe bioavailability among organisms and regions; b) calculating dFe uptake rates and residence times in low-Fe oceanic regions; and c) constraining Fe uptake parameters of earth system models to better predict ocean productivity in response to climate-change.

The data suggest that dFe species are highly available in low-Fe settings, likely due to photochemical reactions in sunlit waters.

Figure 1: The new bioavailability proxy (an uptake rate constant-kin-app) was calculated for ~1000 single cells from multiple ocean regions. For each cell, the iron quota was measured with synchrotron x-ray fluorescence (left panel), a growth rate was estimated from the PISCES model for the corresponding phytoplankton group (right panel), and the dissolved Fe concentration was measured concurrently (middle panel).

Authors:
Y. Shaked (Hebrew University and Interuniversity Institute for Marine Sciences)
B.S. Twining (Bigelow Lab)
A. Tagliabue (University of Liverpool)
M.T. Maldonado (University of British Columbia)
K.N. Buck (University of South Florida)
T. Mellett (University of South Florida)

References:
Shaked, Y., Twining, B. S., Tagliabue, A., & Maldonado, M. T. (2021). Probing the bioavailability of dissolved iron to marine eukaryotic phytoplankton using in situ single cell iron quotas. Global Biogeochemical Cycles, e2021GB006979. https://doi.org/10.1029/2021GB006979

Shaked, Y., Buck, K. N., Mellett, T., & Maldonado, M. T. (2020). Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. The ISME Journal, 1–12. https://doi.org/10.1038/s41396-020-0597-3

 

Joint highlight with GEOTRACES – read here.

Using BGC-Argo to obtain depth-resolved net primary production

Posted by mmaheigan 
· Friday, July 23rd, 2021 

Net primary production (NPP)—the organic carbon produced by the phytoplankton minus the organic carbon respired by phytoplankton themselves—serves as a major energy source of the marine ecosystem. Traditional methods for measuring NPP rely on ship-based discrete sampling and bottle incubations (e.g., 14C incubation), which introduce potential artifacts and limit the spatial and temporal data coverage of the global ocean. The global distribution of NPP has been estimated using satellite observations, but the satellite remote sensing approach cannot provide direct information at depth.

Figure 1. Panel A. Trajectories of 5 BGC-Argo and 1 SOS-Argo with the initial float deployment locations denoted by filled symbols. The dash-line at 47° N divided the research area into the northern (temperate) and southern (subtropical) regions. Stars indicate ship stations where 14C NPP values were measured during NAAMES cruises and compared with NPP from nearby Argo floats. Panels B and C. Monthly climatologies of net primary production (NPP, mmol m-3 d-1) profiles in the northern and southern regions of the research area, derived from BGC-Argo measurements using the PPM model. The shadings indicate one standard deviation. The red dotted line indicates mixed layer depth (MLD, m), and the yellow dashed line shows euphotic depth (Z1%, m).

To fill this niche, a recent study in Journal of Geophysical Research: Biogeosciences, applied bio-optical measurements from Argo profiling floats to study the year-round depth-resolved NPP of the western North Atlantic Ocean (39° N to 54° N). The authors calculated NPP with two bio-optical models (Carbon-based Productivity Model, CbPM; and Photoacclimation Productivity Model, PPM). A comparison with NPP profiles from 14C incubation measurements showed advantages and limitations of both models. CbPM reproduced the magnitude of NPP in most cases, but had artifacts in the summer (a large NPP peak in the subsurface) due to the subsurface chlorophyll maximum caused by photoacclimation. PPM avoided the artifacts in the summer from photoacclimation, but the magnitude of PPM-derived NPP was smaller than the 14C result. Latitudinally varying NPP were observed, including higher winter NPP/lower summer NPP in the south, timing differences in NPP seasonal phenology, and different NPP depth distribution patterns in the summer months. With a 6-month record of concurrent oxygen and bio-optical measurements from two Argo floats, the authors also demonstrated the ability of Argo profiling floats to obtain estimates of the net community production (NCP) to NPP ratio (f-ratio), ranging from 0.3 in July to -1.0 in December 2016.

This work highlights the utility of float bio-optical profiles in comparison to traditional measurements and indicates that environmental conditions (e.g. light availability, nutrient supply) are major factors controlling the seasonality and spatial (horizontal and vertical) distributions of NPP in the western North Atlantic Ocean.

 

Authors:
Bo Yang (University of Virginia, UM CIMAS/NOAA AOML)
James Fox (Oregon State University)
Michael J. Behrenfeld (Oregon State University)
Emmanuel S. Boss (University of Maine)
Nils Haëntjens (University of Maine)
Kimberly H. Halsey (Oregon State University)
Steven R. Emerson (University of Washington)
Scott C. Doney (University of Virginia)

Will temperate kelp forests persist?

Posted by mmaheigan 
· Monday, July 12th, 2021 

Giant kelp is a highly productive foundation species that forms dense forests on temperate reefs around the world. These ecosystems have remarkably high rates of carbon fixation—giant kelp can grow half a meter a day—and the physical structure formed by kelp’s tall fronds profoundly alters the benthic habitat. However, giant kelp is regularly ripped out by storms. These periodic losses followed by potentially rapid recovery mean giant kelp abundance can fluctuate greatly over relatively short timescales. In addition to influencing patterns of net primary productivity, these fluctuations may have cascading effects on the benthic community. When kelp is abundant, its canopy shades and inhibits the growth of other macroalgae, which opens benthic space for invertebrates like bryozoans, sponges, and tunicates. When kelp is absent, more light reaches the seafloor, allowing understory macroalgal species to proliferate. Climate change is predicted to increase the frequency and intensity of storms across much of giant kelp’s range. Thus, an important question is how will changing disturbance regimes impact the structure and functions of kelp forest ecosystems?

To address this question, a paper recently published in Ecology explored the effects of variable storm regimes on giant kelp dynamics and benthic community structure. The authors built a novel mathematical model describing this system and validated their model with long-term data collected by the Santa Barbara Coastal LTER. This model predicts that increases in storm frequency and intensity could lead to persistent shifts in benthic community composition by facilitating the dominance of understory macroalgae. The model, together with the SBC LTER data used to validate it, provides a predictive framework for understanding how climate-driven shifts in storm regimes may affect kelp forest community dynamics. These dynamics, which influence key ecosystem functions like primary production, could have wide-reaching implications for how the ecosystem services provided by kelp forests will be altered in a changing climate.

Figure 1: The top two images depict reefs following a winter with severe and mild storms, respectively. (a) Giant kelp frond density (green) and mean percent cover of sessile invertebrates (blue) and understory macroalgae (orange) on Mohawk Reef from 2008 to 2019. Black vertical lines indicate the occurrence of major wave events (severe storms). (b) Model output from a simulation of a similar storm regime.

 

Authors:
A. Raine Detmer, Robert J. Miller, Daniel C. Reed, Tom W. Bell, Adrian C. Stier, Holly V. Moeller (all University of California, Santa Barbara)

Hydrogeology modulates carbon outwelling from tidal wetlands

Posted by mmaheigan 
· Monday, July 12th, 2021 

Tidal wetlands are highly productive ecosystems that have the potential to sequester and bury vast quantities of atmospheric carbon dioxide, making them effective blue carbon habitats. There is emerging evidence that lateral export of dissolved carbon (outwelling) can greatly exceed carbon burial in blue carbon habitats. However, little is known about the spatial and temporal variability of lateral carbon exports, and how this subsurface pathway may respond with sea level rise.

In a recent paper published in Limnology and Oceanography, researchers collected sediment cores for radiochemical analyses across different salt marsh zones to find the key spatial positions of marsh sediment flushing. The majority of the dissolved inorganic carbon flux occurred at the subsurface interface intersected by low tide, where tidal “pumping” disproportionately drains near creekbank sediments, but not the higher elevation marsh interior. Sea level increase floods a greater proportion of the marsh area, so in shallow sediment there is increased flushing and dissolved carbon flux. Surprisingly, dissolved carbon flux varied by a factor of four between two marshes within the same estuary, demonstrating that marsh hydrogeology and dissolved carbon transport is highly variable in space and time.

The magnitude and role of dissolved lateral carbon exports, as compared to carbon burial, is a major knowledge gap in coastal carbon budgets. Accounting of dissolved carbon exports from tidal wetlands will become increasingly more important as we consider outwelling within blue carbon management frameworks, and further highlights the need for more comprehensive studies linking tidal wetland hydrogeology with biogeochemical cycling.

Figure 1. Left: Marsh porewater dissolved inorganic carbon concentration collected at near creek, mid-marsh and interior marsh stations during summer (Sage Lot Pond, MA). Right: Sediment core 224Ra:228Th activity ratios depicting zones of recent sediment flushing (blue shading, ratio <0.9) that facilitate dissolved carbon outwelling, and zones of equilibrium (red shading, minimal flushing; ratio ≥0.9).

 

Authors:
Joseph J. Tamborski (WHOI, Dalhousie Univ, Old Dominion Univ)
Meagan Eagle (USGS)
Barret L. Kurylyk (Dalhousie Univ)
Kevin D. Kroeger (USGS)
Zhaohui Aleck Wang (WHOI)
Paul Henderson (WHOI)
Matthew A. Charette (WHOI)

Is seaweed farming an effective method to reduce atmospheric CO2?

Posted by mmaheigan 
· Tuesday, June 15th, 2021 

The world is in need of effective methods to reduce CO2 in the atmosphere, and the ocean could potentially help us to meet this objective. One idea, explored since the 1980s, is to grow seaweeds on platforms in the open ocean to fix carbon and sequester it at great depth (ocean afforestation). But would that work at scale?

To address this question, we utilized the Great Atlantic Sargassum Belt as a natural analogue for seaweed farms distributed across the (sub)tropical Atlantic. We found that the CO2 removal potential of ocean afforestation is substantially modified by biogeochemical and physical processes associated with seaweed growth and ecology in the open ocean. Most noticeably, seaweeds provide habitat for calcifying organisms, which form CO2 through changes to seawater carbonate chemistry occurring during the calcification process. Furthermore, seaweed carbon fixation is fuelled by limiting nutrients, which once taken up by seaweeds are not available any longer to support CO2 removal by the natural inhabitants of the open ocean – phytoplankton.

After accounting for offsets to carbon fixation we also considered that seaweeds fix CO2 dissolved in seawater, not atmospheric CO2. The atmospheric CO2 has to be subsequently absorbed by the oceans in a second step, which takes much longer (weeks to years) and is more difficult to quantify than one may think.

We also investigated how ocean afforestation influences the albedo (i.e., reflectance) of the Earth. The sign and magnitude of afforestation-related albedo changes on radiative forcing depend on multiple indirect effects linked to the release of substances that influence cloud formation. We didn’t dare to go down this rabbit hole. However, we were surprised to see that even just the brightening of the sea surface through seaweed growth (and thus the direct reflection of light) may have a stronger influence on radiative forcing than the CO2 removal associated with ocean afforestation.

How did we interpret all this? Most importantly, our study does not suggest that CO2 removal with seaweed farming is impossible. However, it shows that successful CO2 removal and its verification requires much more than simply generating seaweed biomass. The complexity of this method could be its Achilles heel and hence become its knock-out criterion, because a large number of interacting processes must be quantified to determine the sign and magnitude of the net climatic impact of ocean afforestation.

Figure from Bach et al https://doi.org/10.1038/s41467-021-22837-2

 

Authors:
Lennart Bach, Catriona Hurd, Philip Boyd (Institute for Marine and Antarctic Studies, University of Tasmania)
Veronica Tamsitt (University of New South Wales and CSIRO Hobart)
Jim Gower (Fisheries and Oceans Canada)
John Raven (University of Dundee at the James Hutton Institute and University of Technology, Sydney and University of Western Australia)

 

Articles referenced above:
Bach, L.T., Tamsitt, V., Gower, J. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat Commun 12, 2556 (2021). https://doi.org/10.1038/s41467-021-22837-2

Jones, D. C., T. Ito, Y. Takano, and W.-C. Hsu (2014), Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide, Global Biogeochem. Cycles, 28, 1163–1178, doi:10.1002/2014GB004813.

Orr, J.C., Sarmiento, J.L. Potential of marine macroalgae as a sink for CO2: Constraints from a 3-D general circulation model of the global ocean. Water Air Soil Pollut 64, 405–421 (1992). https://doi.org/10.1007/BF00477113

Wang, Mengqiu, Chuanmin Hu, Brian B. Barnes, Gary Mitchum, Brian Lapointe, Joseph P. Montoya. The great Atlantic Sargassum belt. Science. 05 Jul 2019. Vol. 365, Issue 6448, pp. 83-87. DOI:10.1126/science.aaw7912

 

Learn more in the recorded talks and information on the OCB2021 Plenary Session: Ocean-based negative emissions technologies

Regional scale production shifts drive global ocean production stoichiometry

Posted by mmaheigan 
· Thursday, May 20th, 2021 

The C:N:P stoichiometry of global ocean biological production is the gear by which marine biology turns the wheels of the global ocean carbon cycle. From the days of Alfred Redfield until fairly recently, this stoichiometry was assumed a constant in ocean biogeochemistry (e.g., the Redfield ratio). Traditional stoichiometry would predict a carbon export production decline in the future, as warming is generally expected to enhance water column stratification and diminish the vertical supply of nutrients. However, recent observations clearly show that the C:N:P ratio is quite variable: the ratio is higher in oligotrophic waters than in eutrophic waters, and the ratio is higher in cyanobacteria than eukaryotes. How can flexible C:N:P ratio in phytoplankton affect future carbon export?

A recent publication in Environmental Research Letters discusses three drivers of global ocean production stoichiometry in the future: physiological response of phytoplankton, changes in phytoplankton community composition, and shifts in the regional production, which the authors focused most on as it is the least explored. The authors carried out global warming experiments using a numerical model of global ocean biogeochemistry that represents flexible C:N:P ratios in multiple phytoplankton types with dependence on ambient N and P concentrations, temperature, and light. These model results indicate the importance of the physiological response of cyanobacteria to warming and of eukaryotes to P depletion in driving a higher C:N:P ratio (Figure 1).

Figure caption: Diagnosed effect of regional production changes on the future global mean C:P ratio. The diagnosis (c) is given by the product of the sign of the effect (a) and the production changes (b). The sign of the effect of the regional production changes is positive (+1) for locations with local C:P > global mean (red) and negative (−1) for locations with C:P < global mean (blue). The diagnosis shows a N-S dipole response in both the Southern Ocean and the North Atlantic, where changes in production both increase and decrease the global C:N:P ratio.

 

Global production C:N:P ratio can vary by shifting the regional production, even in the absence of any change in phytoplankton stoichiometry or taxonomy. For example, simply increasing the production in polar waters—which typically have low C:N:P ratios (eukaryote-dominant, P-rich, and cold)—will lower the global C:N:P ratio, because the polar production then makes a relatively larger contribution to the global production. In this model, future Antarctic sea ice retreat has this very effect, but is offset by production changes downstream and elsewhere. Current literature indicates substantial uncertainty in the future projection of regional production changes. This study illuminates regional production as a new driver of global export C:N:P ratio and an important area of future investigation.

 

Authors:
Katsumi Matsumoto (University of Minnesota)
Tatsuro Tanioka (University of Minnesota, now University of California, Irvine)

Who’s eating whom in the planktonic food web of the Northeast Shelf?

Posted by mmaheigan 
· Wednesday, May 5th, 2021 

It is critical to quantify the amount of phytoplankton that microzooplankton consume to better understand the flow of carbon toward higher trophic levels in the ocean. The Northeast US Shelf (NES) sustains intense fisheries with huge economical importance, but the links between the planktonic food web and the fish stocks are poorly constrained.

A recent study, which is part of the NES-LTER site (NES Long-Term Ecological Research, est. 2017), quantified phytoplankton growth rates and microzooplankton grazing rates across the NES during one summer and two winter cruises. The strong seasonal differences of physical and biogeochemical properties, associated with their intense spatial heterogeneity along the shelf, provided a unique opportunity to investigate the planktonic food web dynamics across contrasting environmental conditions.

Seasonal (winter vs. summer) and spatial (coastal vs. offshore) variability of the phytoplankton community structure, phytoplankton growth rates and microzooplankton grazing rates in the Northeast US Shelf.

During both winter and summer, coastal waters, which originate in the Arctic, were colder and fresher, and hosted greater phytoplankton biomass compared to the offshore warm slope-sea waters of the Gulf Stream (Figure 1). In winter the phytoplankton community was dominated by large cells (>10 µm), and most of the primary production was directly consumed by microzooplankton, allowing direct and efficient transfer of carbon to higher trophic levels (Figure 1). In contrast, small phytoplankton cells dominated in summer, when fast growing phytoplankton were not preyed upon by microzooplankton grazers, limiting their role conducting organic matter, yet the lack of phytoplankton accumulation during summer suggests some unidentified loss processes and more complex trophic interactions (e.g., trophic cascades, mixotrophy).

The ongoing NES-LTER project is an outstanding opportunity to investigate the flow of carbon amongst the planktonic food web for a predictive understanding of ecosystem productivity in a changing coastal ocean.

 

Authors:
Pierre Marrec, Heather McNair, Gayantonia Franzè (present address: Institute of Marine Research, Norway), Françoise Morison, Jacob P. Strock and Susanne Menden-Deuer
(All authors: Graduate School of Oceanography, University of Rhode Island)

 

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation CO2 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.